【題目】如果將四根木條首尾相連,在相連處用螺釘連接,就能構(gòu)成一個(gè)平面圖形.
(1)若固定三根木條AB,BC,AD不動(dòng),AB=AD=2cm,BC=5cm,如圖,量得第四根木條CD=5cm,判斷此時(shí)∠B與∠D是否相等,并說(shuō)明理由.
(2)若固定一根木條AB不動(dòng),AB=2cm,量得木條CD=5cm,如果木條AD,BC的長(zhǎng)度不變,當(dāng)點(diǎn)D移到BA的延長(zhǎng)線上時(shí),點(diǎn)C也在BA的延長(zhǎng)線上;當(dāng)點(diǎn)C移到AB的延長(zhǎng)線上時(shí),點(diǎn)A、C、D能構(gòu)成周長(zhǎng)為30cm的三角形,求出木條AD,BC的長(zhǎng)度.
【答案】
(1)解:相等.
理由:連接AC,
在△ACD和△ACB中,
,
∴△ACD≌△ACB,
∴∠B=∠D.
(2)解:設(shè)AD=x,BC=y,
當(dāng)點(diǎn)C在點(diǎn)D右側(cè)時(shí), ,解得 ,
當(dāng)點(diǎn)C在點(diǎn)D左側(cè)時(shí), 解得 ,
此時(shí)AC=17,CD=5,AD=8,5+8<17,
∴不合題意,
∴AD=13cm,BC=10cm.
【解析】本題考查全等三角形的判定和性質(zhì)、二元一次方程組、三角形三邊關(guān)系定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)分類討論,考慮問(wèn)題要全面,屬于中考?碱}型.(1)相等.連接AC,根據(jù)SSS證明兩個(gè)三角形全等即可.(2)分兩種情形①當(dāng)點(diǎn)C在點(diǎn)D右側(cè)時(shí),②當(dāng)點(diǎn)C在點(diǎn)D左側(cè)時(shí),分別列出方程組即可解決問(wèn)題,注意最后理由三角形三邊關(guān)系定理,檢驗(yàn)是否符合題意.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象,下列結(jié)論: ①二次三項(xiàng)式ax2+bx+c的最大值為4;
②4a+2b+c<0;
③一元二次方程ax2+bx+c=1的兩根之和為﹣1;
④使y≤3成立的x的取值范圍是x≥0.
其中正確的個(gè)數(shù)有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在圖(1)中,A1、B1、C1分別是△ABC的邊BC、CA、AB的中點(diǎn),在圖(2)中,A2、B2、C2分別是△A1B1C1的邊B1C1、C1A1、A1B1的中點(diǎn),…,按此規(guī)律,則第n個(gè)圖形中平行四邊形的個(gè)數(shù)共有個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD及等邊△ABE.已知∠BAC=30°,EF⊥AB,垂足為F,連接DF.
(1)試說(shuō)明AC=EF;
(2)求證:四邊形ADFE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠ABC=∠BAD,添加下列條件還不能判定△ABC≌△BAD的是( )
A.AC=BD
B.∠CAB=∠DBA
C.∠C=∠D
D.BC=AD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,已知點(diǎn)E、F分別是AD、CE邊上的中點(diǎn),且S△BEF=4cm2 , 則S△ABC的值為( 。
A.1cm2
B.2cm2
C.8cm2
D.16cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角△ABC中,∠C=90°,∠CAB的平分線AD交BC于D,若DE垂直平分AB,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】回答下列問(wèn)題:
(1)如圖所示的甲、乙兩個(gè)平面圖形能折什么幾何體?
(2)由多個(gè)平面圍成的幾何體叫做多面體.若一個(gè)多面體的面數(shù)為f , 頂點(diǎn)個(gè)數(shù)為v , 棱數(shù)為e , 分別計(jì)算第(1)題中兩個(gè)多面體的f+v﹣e的值?你發(fā)現(xiàn)什么規(guī)律?
(3)應(yīng)用上述規(guī)律解決問(wèn)題:一個(gè)多面體的頂點(diǎn)數(shù)比面數(shù)大8,且有50條棱,求這個(gè)幾何體的面數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,BC=AC,以BC為直徑的⊙O與邊AB相交于點(diǎn)D,DE⊥AC,垂足為點(diǎn)E.
(1)求證:點(diǎn)D是AB的中點(diǎn);
(2)判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(3)若⊙O的直徑為18,cosB= ,求DE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com