【題目】分解因式:a-4a=
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在A、B之間有汽車站C站,A、C兩地相距540千米,如圖1所示.客車由A地駛向C站、貨車由B地駛向A地,兩車同時出發(fā),勻速行駛,貨車的速度是客車速度的.圖2是客、貨車離C站的路程、(千米)與行駛時間x(小時)之間的函數(shù)關(guān)系圖象.
(1)求客、貨兩車的速度;
(2)求兩小時后,貨車離C站的路程與行駛時間x之間的函數(shù)關(guān)系式;
(3)求E點坐標(biāo),并說明點E的實際意義.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,射線AM平行于射線BN,∠B=90°,AB=4,C是射線BN上的一個動點,連接AC,作CD⊥AC,且AC=2CD,過C作CE⊥BN交AD于點E,設(shè)BC長為a.
(1)求△ACD的面積(用含a的代數(shù)式表示);
(2)求點D到射線BN的距離(用含有a的代數(shù)式表示);
(3)是否存在點C,使△ACE是以AE為腰的等腰三角形?若存在,請求出此時a的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某測量人員的眼睛A與標(biāo)桿頂端F、電視塔頂端E在同一條直線上,已知此人的眼睛到地面的距離AB=1.6m,標(biāo)桿FC=2.2m,且BC=1m,CD=5m,標(biāo)桿FC、ED垂直于地面.求電視塔的高ED.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點E是AB的中點,點P是邊BC上的動點,點Q是對角線AC上的動點(包括端點A,C),則EP+PQ的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象開口向上,圖象經(jīng)過點(-1,2)和(1,0),且與y
軸相交于負(fù)半軸。給出四個結(jié)論:①;②;③;④ ,其中正確結(jié)論的序
號是___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個頂點B(1, 0)、C(3, 0)、D(3, 4).以A為頂點的拋物線y=ax2+bx+c過點C.動點P從點A出發(fā),以每秒個單位的速度沿線段AD向點D運(yùn)動,運(yùn)動時間為t秒.過點P作PE⊥x軸交拋物線于點M,交AC于點N.
(1)直接寫出點A的坐標(biāo),并求出拋物線的解析式;
(2)當(dāng)t為何值時,△ACM的面積最大?最大值為多少?
(3)點Q從點C出發(fā),以每秒1個單位的速度沿線段CD向點D運(yùn)動,當(dāng)t為何值時,在線段PE上存在點H,使以C、Q、N、H為頂點的四邊形為菱形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從邊長為a的大正方形紙板中挖去一個邊長為b的小正方形紙板后,將其裁成四個相同的等腰梯形(如圖甲),然后拼成一個平行四邊形(如圖乙).那么通過計算兩個圖形陰影部分的面積,可以驗證成立的公式為( )
A.a2﹣b2=(a﹣b)2
B.(a+b)2=a2+2ab+b2
C.(a﹣b)2=a2﹣2ab+b2
D.a2﹣b2=(a+b)(a﹣b)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計算正確的是( 。
A. a2a3=a5 B. a2+a3=a5 C. (ab2)3=ab6 D. a10÷a2=a5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com