如圖,ABCD是一張矩形紙片,沿過(guò)點(diǎn)D的折痕將A角翻折,使得點(diǎn)A落在BC上,折痕交AB于點(diǎn)E,若BC=2AB,則∠A′EB=________.

30°
分析:根據(jù)三角函數(shù)即可求得∠DA1C的度數(shù),進(jìn)而根據(jù)△AED≌△A′DE,求得∠A′EA的度數(shù),即可求解.
解答:∵AD=2CD,
∴A1D=2CD,
∵∠C=90°,
∴∠DA1C=30°,
∴∠A′DA=30°,
∵△AED≌△A′DE,
∴∠ADE=∠A′DE=15°,
∴∠AED=∠A′ED=75°,
∴∠A′EB=180°-75°-75°=30°.
故答案是:30°
點(diǎn)評(píng):本題主要考查了圖形的折疊變換,正確求得∠DA1C=30°是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、如圖,ABCD是一張矩形紙片,點(diǎn)O為矩形對(duì)角線的交點(diǎn).直線MN經(jīng)過(guò)點(diǎn)O交AD于M,交BC于N.
操作:先沿直線MN剪開(kāi),并將直角梯形MNCD繞點(diǎn)O旋轉(zhuǎn)
(1)
度后(填入一個(gè)你認(rèn)為正確的序號(hào):(1)90°;(2)180°;(3)270°;(4)360°),恰與直角梯形NMAB完全重合;再將重合后的直角梯形MNCD以直線MN為軸翻轉(zhuǎn)180°后所得到的圖形是下列中的
D
.(填寫正確圖形的代號(hào))

A、B、C、D、

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,ABCD是一張矩形紙片,點(diǎn)O為矩形對(duì)角線的交點(diǎn),直線MN經(jīng)過(guò)點(diǎn)O交AD于M,交BC于N.
操作:先沿直線MN剪開(kāi),并將直角梯形MNCD繞O點(diǎn)旋轉(zhuǎn)180°后,恰好與直角梯形NMAB完全重合,再將重合后的直角梯形MNCD以直線MN為軸翻轉(zhuǎn)180°后所得的圖形可能是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,ABCD是一張邊長(zhǎng)為4cm的正方形紙片,E,F(xiàn)分別為AB,CD的中點(diǎn),沿過(guò)點(diǎn)D的折痕將A 角翻折,使得點(diǎn)A落在EF上的點(diǎn)A′處,折痕交AE于點(diǎn)G,則EG=
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、如圖,ABCD是一張矩形紙片,沿過(guò)點(diǎn)D的折痕將A角翻折,使得點(diǎn)A落在BC上,折痕交AB于點(diǎn)E,若BC=2AB,則∠A′EB=
30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,ABCD是一張矩形紙片,AD=BC=1,AB=CD=5.在矩形ABCD的邊AB上取一點(diǎn)M,在CD上取一點(diǎn)N,將紙片沿MN折疊,使MB與DN交于點(diǎn)K,得到△MNK.
精英家教網(wǎng)
(1)若∠1=70°,求∠MKN的度數(shù);
(2)△MNK的面積能否小于
12
?若能,求出此時(shí)∠1的度數(shù);若不能,試說(shuō)明理由;
(3)如何折疊能夠使△MNK的面積最大?請(qǐng)你用備用圖探究可能出現(xiàn)的情況,求最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案