(11·貴港)(本題滿分9分)
如圖所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分線AE交BC于點E,連接DE.
(1)求證:四邊形ABED是菱形;
(2)若∠ABC=60°,CE=2BE,試判斷△CDE的形狀,并說明理由.
(1)證明:如圖,∵AE平分∠BAD   ∴∠1=∠2
∵AB=AD   AE=AE             
∴△BAE≌△DAE             ………………2分
∴BE=DE
∵AD∥BC   ∴∠2=∠3
∴∠1=∠3   ∴AB=BE      ………………3分
∴AB=BE=DE=AD
∴四邊形ABED是菱形        ………………4分
(1)△CDE是直角三角形 理由如下:………………5分
如圖,過點D作DF∥AE交BC于點F,………………6分

則四邊形AEFD是平行四邊形
∴DF=AE,AD=EF=BE
∵CE=2BE
∴BE=EF=FC
∴DE=EF
又∵∠ABC=60°,AB∥DE
∴∠DEF=60°,
∴△DEF是等邊三角形             ………………8分
∴DF=EF=FC
∴△CDE是直角三角形             ………………9分解析:
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(11·貴港)(本題滿分11分)

如圖所示,在以O為圓心的兩個同心圓中,小圓的半徑為1,AB與小圓相切于點A,與大圓相交于點B,大圓的弦BC⊥AB于點B,過點C作大圓的切線CD交AB的延長線于點D,連接OC交小圓于點E,連接BE、BO.

(1)求證:△AOB∽△BDC;

(2)設大圓的半徑為x,CD的長為y:

① 求y與x之間的函數(shù)關系式;

② 當BE與小圓相切時,求x的值.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(11·貴港)(本題滿分10分)

隨著人們經濟收入的不斷提高及汽車產業(yè)的快速發(fā)展,汽車已越來越多地進入普通家庭.據(jù)某市交通部門統(tǒng)計,2008年底該市汽車擁有量為75萬輛,而截止到2010年底,該市的汽車擁有量已達108萬輛.

(1)求2008年底至2010年底該市汽車擁有量的年平均增長率;

(2)為了保護城市環(huán)境,緩解汽車擁堵狀況,該市交通部門擬控制汽車總量,要求到2012

年底全市汽車擁有量不超過125.48萬輛;另據(jù)統(tǒng)計,從2011年初起,該市此后每年報廢的

汽車數(shù)量是上年底汽車擁有量的10%假設每年新增汽車數(shù)量相同,請你估算出該市從2011

年初起每年新增汽車數(shù)量最多不超過多少萬輛.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(11·貴港)(本題滿分9分)

如圖所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分線AE交BC于點E,連接DE.

(1)求證:四邊形ABED是菱形;

(2)若∠ABC=60°,CE=2BE,試判斷△CDE的形狀,并說明理由.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(11·貴港)(本題滿分9分)

 “校園手機”現(xiàn)象越來越受到社會的關注.為了了解學生和家長對中學生帶手機的態(tài)度,某記者隨機調查了城區(qū)若干名學生和家長的看法,調查結果分為:贊成、無所謂、反對,并將調查結果繪制成如下不完整的統(tǒng)計表和統(tǒng)計圖:

根據(jù)以上圖表信息,解答下列問題:

(1)統(tǒng)計表中的A=_   ▲   ;

(2)統(tǒng)計圖中表示家長“贊成”的圓心角的度數(shù)為_   ▲   度;

(3)從這次接受調查的學生中,隨機抽查一個,恰好是持“反對”態(tài)度的學生的概率是多少?

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(11·貴港)(本題滿分6分)

按要求用尺規(guī)作圖(只保留作圖痕跡,不必寫出作法)

(1)在圖(1)中作出∠ABC的平分線;(2)在圖(2)中作出△DEF的外接圓O.

 

查看答案和解析>>

同步練習冊答案