(2010•鄂爾多斯)如圖,⊙O1和⊙O2的半徑分別是1和2,連接O1O2,交⊙O2于點P,O1O2=5,若將⊙O1繞點P按順時針方向旋轉360°,則⊙O1與⊙O2共相切    次.
【答案】分析:本題根據(jù)兩圓位置關系的對應情況便可直接得出答案.
外離,則P>R+r;外切,則P=R+r;相交,則R-r<P<R+r;內(nèi)切,則P=R-r;內(nèi)含,則P<R-r.
(P表示圓心距,R,r分別表示兩圓的半徑).
解答:解:∵⊙O1和⊙O2的半徑分別是1和2,O1O2=5,
∴O1P=3,
∴分別過O2,P以3為半徑可找到相切2次.
O1O2的延長線可找到相切1次.
故⊙O1與⊙O2共相切3次.
點評:此題考查了兩圓相切的位置關系,外切,則P=R+r(P表示圓心距,R,r分別表示兩圓的半徑).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《圖形的平移》(01)(解析版) 題型:解答題

(2010•鄂爾多斯)如圖,四邊形OABC是一張放在平面直角坐標系的矩形紙片,O為原點,點A在x軸上,點C在y軸上,OA=15,OC=9,在AB上取一點M,使得△CBM沿CM翻折后,點B落在x軸上,記作N點.
(1)求N點、M點的坐標;
(2)將拋物線y=x2-36向右平移a(0<a<10)個單位后,得到拋物線l,l經(jīng)過點N,求拋物線l的解析式;
(3)①拋物線l的對稱軸上存在點P,使得P點到M、N兩點的距離之差最大,求P點的坐標;
②若點D是線段OC上的一個動點(不與O、C重合),過點D作DE∥OA交CN于E,設CD的長為m,△PDE的面積為S,求S與m之間的函數(shù)關系式,并說明S是否存在最大值?若存在,請求出最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《一次函數(shù)》(02)(解析版) 題型:選擇題

(2010•鄂爾多斯)定義新運算:a※b=,則函數(shù)y=3※x的圖象大致是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年內(nèi)蒙古鄂爾多斯市中考數(shù)學試卷(解析版) 題型:解答題

(2010•鄂爾多斯)如圖,四邊形OABC是一張放在平面直角坐標系的矩形紙片,O為原點,點A在x軸上,點C在y軸上,OA=15,OC=9,在AB上取一點M,使得△CBM沿CM翻折后,點B落在x軸上,記作N點.
(1)求N點、M點的坐標;
(2)將拋物線y=x2-36向右平移a(0<a<10)個單位后,得到拋物線l,l經(jīng)過點N,求拋物線l的解析式;
(3)①拋物線l的對稱軸上存在點P,使得P點到M、N兩點的距離之差最大,求P點的坐標;
②若點D是線段OC上的一個動點(不與O、C重合),過點D作DE∥OA交CN于E,設CD的長為m,△PDE的面積為S,求S與m之間的函數(shù)關系式,并說明S是否存在最大值?若存在,請求出最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年湖北省十堰市鄖西縣中考適應性考試數(shù)學試卷(解析版) 題型:選擇題

(2010•鄂爾多斯)如圖,某電信公司提供了A,B兩種方案的移動通訊費用y(元)與通話時間x(元)之間的關系,則以下說法錯誤的是( )

A.若通話時間少于120分,則A方案比B方案便宜20元
B.若通話時間超過200分,則B方案比A方案便宜12元
C.若通訊費用為60元,則B方案比A方案的通話時間多
D.若兩種方案通訊費用相差10元,則通話時間是145分或185分

查看答案和解析>>

科目:初中數(shù)學 來源:2009年湖北省黃岡市浠水縣麻橋中學中考模擬數(shù)學試卷(解析版) 題型:選擇題

(2010•鄂爾多斯)如圖,某電信公司提供了A,B兩種方案的移動通訊費用y(元)與通話時間x(元)之間的關系,則以下說法錯誤的是( )

A.若通話時間少于120分,則A方案比B方案便宜20元
B.若通話時間超過200分,則B方案比A方案便宜12元
C.若通訊費用為60元,則B方案比A方案的通話時間多
D.若兩種方案通訊費用相差10元,則通話時間是145分或185分

查看答案和解析>>

同步練習冊答案