ab,則求下列不等式組的解集.

答案:
解析:

  axb

  簡稱“大小小大取中間”即大于等于小的,且小于大的,解集為線段(不含右端點).


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)病人按規(guī)定的劑量服用某種藥物,測得服藥后2小時,每毫升血液中的含藥量達到最大值為4毫克,已知服藥后,2小時前每毫升血液中的含藥量y(毫克)與時間x(小時)成正比例,2小時后y與x成反比例(如圖所示).根據(jù)以上信息解答下列問題.
(1)求當0≤x≤2時,y與x的函數(shù)關系式;
(2)求當x>2時,y與x的函數(shù)關系式;
(3)若每毫升血液中的含藥量不低于2毫克時治療有效,則服藥一次,治療疾病的有效時間是多長?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

先閱讀下列內容,然后解答問題:
“轉化”是初中數(shù)學的重要數(shù)學思想,轉化的目的是化繁為簡、化難為易.如計算
199009922
199009912+199009932-2
,若不借助計算器直接通過運算求值是很繁的,但若設x=19900992,則原式=
x2
(x-1)2+(x+1)2-2
=
x2
2x2
=
1
2
,此題就很簡單了.
請你利用“轉化”思想求下列式子的值:(
1
2006
-
2008
20052-1
×
20042
20072-1
)×20062

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•吉安模擬)如圖,有一張矩形紙片ABCD,已知AB=2,BC=4,若點E是AD上的一個動點(與點A不重合),且0<AE≤2,沿BE將△ABE對折后,點A落到點P處,連接PC.
(1)下列說法正確的序號是
①②④
①②④

①.△ABE與△PBE關于直線BE對稱
②.以B為圓心、BA的長為半徑畫弧交BC于H,則點P在AH上(點A除外)
③.線段PC的長有可能小于2.
④.四邊形ABPE有可能為正方形
(2)試求下列情況下的線段PC的長(可用計算器,精確到0.1).
①以P、C、D為頂點的三角形是等腰三角形;
②直線CP與BE垂直.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀材料:∵ax2+bx+c=0(a≠0)有兩根為x1=
-b+
b2-4ac
2a
x2=
-b-
b2-4ac
2a
.∴x1+x2=
-2b
2a
=-
b
a
,x1x2=
b2-(b2-4ac)
4a2
=
c
a
.綜上得,設ax2+bx+c=0(a≠0)的兩根為x1、x2,則有x1+x2=-
b
a
x1x2=
c
a
.利用此知識解決:
(1)已知x1,x2是方程x2-x-1=0的兩根,不解方程求下列式子的值:①x12+x22;②(x1+1)(x2+1);
(2)是否存在實數(shù)m,使關于x的方程x2+(m+1)x+m+4=0的兩根平方和等于2?若存在,求出滿足條件的m的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知如圖1,線段AB、CD相交于點O,連接AD、CB,我們把形如圖1的圖形稱之為“8字形”.如圖2,在圖1的條件下,∠DAB和∠BCD的平分線AP和CP相交于點P,并且與CD、AB分別相交于M、N.
試解答下列問題:
(1)在圖1中,若∠A+∠D=80°,則∠B+∠C=
80°
80°
;仔細觀察,在圖2中“8字形”的個數(shù):
6
6
個;
(2)在圖2中,若∠DAO=50°,∠OCB=40°,∠P=35°,試求∠D的度數(shù);
(3)在圖2中,若設∠D=x°,∠B=y°,其它條件不變,試求∠P的度數(shù).

查看答案和解析>>

同步練習冊答案