【題目】已知∠ACD=90°,AC=DC,MN是過點(diǎn)A的直線,過點(diǎn)D作DB⊥MN于點(diǎn)B,連接CB.

(1)問題發(fā)現(xiàn)
如圖(1),過點(diǎn)C作CE⊥CB,與MN交于點(diǎn)E,則易發(fā)現(xiàn)BD和EA之間的數(shù)量關(guān)系為 , BD、AB、CB之間的數(shù)量關(guān)系為
(2)拓展探究
當(dāng)MN繞點(diǎn)A旋轉(zhuǎn)到如圖(2)位置時,BD、AB、CB之間滿足怎樣的數(shù)量關(guān)系?請寫出你的猜想,并給予證明.

(3)解決問題
當(dāng)MN繞點(diǎn)A旋轉(zhuǎn)到如圖(3)位置時(點(diǎn)C、D在直線MN兩側(cè)),若此時∠BCD=30°,BD=2時,CB=

【答案】
(1)BD=AE,BD+AB= CB
(2)解:證明:如圖2,過點(diǎn)C作⊥CB交MN于點(diǎn)E,

∵∠ACD=90°,

∴∠ACE=90°+∠ACB,∠BCD=90°+∠ACB,

∴∠ACE=∠BCD,

∵DB⊥MN,

∴∠CAE=90°﹣∠AFB,∠D=90°﹣∠CFD,

∵∠AFB=∠CFD,

∴∠CAE=∠D,

∵AC=DC,

∴△ACE≌△DCB,

∴AE=DB,CE=CB,

∵∠ECB=90°,

∴△ECB是等腰直角三角形,

∴BE= CB,

∴BE=AE﹣AB=DB﹣AB,

∴BD﹣AB= CB;


(3)
【解析】解:(1)如圖1,過點(diǎn)C作⊥CB交MN于點(diǎn)E,

∵∠ACD=90°,

∴∠ACE=90°﹣∠ACB,∠BCD=90°﹣∠ACB,

∴∠ACE=∠BCD,

∵DB⊥MN,

∴在四邊形ACDB中,∠BAC+∠ACD+∠ABD+∠D=360°,

∴∠BAC+∠D=180°,

∵∠CE+∠BAC=180°,

∠CAE=∠D,

∵AC=DC,

∴△ACE≌△DCB,

∴AE=DB,CE=CB,

∵∠ECB=90°,

∴△ECB是等腰直角三角形,

∴BE= CB,

∴BE=AE+AB=DB+AB,

∴BD+AB= CB;

所以答案是:BD=AE,BD+AB= CB;(3)如圖3,過點(diǎn)C作⊥CB交MN于點(diǎn)E,

(3)∵∠ACD=90°,

∴∠ACE=90°﹣∠DCE,

∠BCD=90°﹣∠DCE,

∴∠ACE=∠BCD,

∵DB⊥MN,

∴∠CAE=90°﹣∠AFC,∠D=90°﹣∠CFD,

∵∠AFB=∠BFD,

∴∠CAE=∠D,

∵AC=DC,

∴△ACE≌△DCB,

∴AE=DB,CE=CB,

∵∠ECB=90°,

∴△ECB是等腰直角三角形,

∴BE= CB,

∴BE=AB﹣AE=AB﹣DB,

∴AB﹣DB= CB;

∵△BCE為等腰直角三角形,

∴∠BEC=∠CBE=45°,

∵∠ABD=90°,

∴∠DBH=45°

過點(diǎn)D作DH⊥BC,

∴△DHB是等腰直角三角形,

∴BD= BH=2,

∴BH=DH= ,

在Rt△CDH中,∠BCD=30°,DH= ,

∴CH= DH= × =

∴BC=CH﹣BH= ;

所以答案是:

【考點(diǎn)精析】根據(jù)題目的已知條件,利用勾股定理的概念和解直角三角形的相關(guān)知識可以得到問題的答案,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABBC,對角線AC、BD相交于點(diǎn)EEBD中點(diǎn),且ADBD,AB2,∠BAC30°,則DC_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCD,分別探究下面三個圖形中∠P和∠A,∠C的關(guān)系,請你從所得三個關(guān)系中任意選出一個,說明你探究結(jié)論的正確性.

結(jié)論:(1___________________;

2____________________

3_____________________;

(4)選擇結(jié)論____________,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平分平分,則 ______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校興趣小組想測量一座大樓AB的高度.如圖,大樓前有一段斜坡BC,已知BC的長為12米,它的坡度i=1: .在離C點(diǎn)40米的D處,用測角儀測得大樓頂端A的仰角為37°,測角儀DE的高為1.5米,求大樓AB的高度約為多少米?(結(jié)果精確到0.1米)
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75, ≈1.73.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB和直線BC相交于點(diǎn)B,連接AC,點(diǎn)D. E. H分別在ABAC、BC,連接DE、DH,FDH上一點(diǎn),已知∠1+3=180°,

(1)求證:∠CEF=EAD;

(2)DH平分∠BDE,2=α,求∠3的度數(shù).(α表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4cm,AD=12cm,點(diǎn)PAD邊上以每秒1cm的速度從點(diǎn)A向點(diǎn)D運(yùn)動,點(diǎn)QBC邊上,以每秒4cm的速度從點(diǎn)C出發(fā),在CB間往返運(yùn)動,兩個點(diǎn)同時出發(fā),當(dāng)點(diǎn)P到達(dá)點(diǎn)D時停止(同時點(diǎn)Q也停止),在這段時間內(nèi),線段PQ有(。┐纹叫杏AB?

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組: ,并把解集在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCD.

(1)作圖,作∠A的平分線AE交CD于點(diǎn)E(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法);
(2)在(1)的條件下,判斷△AED的形狀并說明理由.

查看答案和解析>>

同步練習(xí)冊答案