【題目】某校八年級(jí)數(shù)學(xué)興趣小組在研究等腰直角三角形與圖形變換時(shí),作了如下研究:在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線(xiàn)BC上一動(dòng)點(diǎn)(點(diǎn)D不與B,C重合),以AD為腰作等腰直角三角形DAF,使∠DAF=90°,連接CF.
(1)觀察猜想
如圖1,當(dāng)點(diǎn)D在線(xiàn)段BC上時(shí),
①CF與BC的位置關(guān)系為 ;
②CF,DC,BC之間的數(shù)量關(guān)系為 (直接寫(xiě)出結(jié)論);
(2)數(shù)學(xué)思考
如圖2,當(dāng)點(diǎn)D在線(xiàn)段CB的延長(zhǎng)線(xiàn)上時(shí),(1)中的①、②結(jié)論是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)你寫(xiě)出正確結(jié)論再給予證明.
(3)拓展延伸
如圖3,當(dāng)點(diǎn)D在線(xiàn)段BC的延長(zhǎng)線(xiàn)上時(shí),將△DAF沿線(xiàn)段DF翻折,使點(diǎn)A與點(diǎn)E重合,連接CE,若已知4CD=BC,AC=2,請(qǐng)求出線(xiàn)段CE的長(zhǎng).
【答案】(1)①垂直;②BC=CF+CD;(2)CF⊥BC成立;BC=CD+CF不成立,結(jié)論:CD=CF+BC.理由見(jiàn)解析;(3)CE=3.
【解析】
(1)①由∠BAC=∠DAF=90°,推出△DAB≌△FAC,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;②由正方形ADEF的性質(zhì)可推出△DAB≌△FAC,根據(jù)全等三角形的性質(zhì)得到CF=BD,∠ACF=∠ABD,根據(jù)余角的性質(zhì)即可得到結(jié)論;
(2)由∠BAC=∠DAF=90°,推出△DAB≌△FAC,根據(jù)全等三角形的性質(zhì)以及等腰直角三角形的角的性質(zhì)可得到結(jié)論.
(3)過(guò)A作AH⊥BC于H,過(guò)E作EM⊥BD于M如圖3所示,想辦法證明△ADH≌△DEM(AAS),推出EM=DH=3,DM=AH=2,推出CM=EM=3,即可解決問(wèn)題.
解:(1)①
等腰直角△ADF中,AD=AF,
∵∠BAC=∠DAF=90°,
∴∠BAD=∠CAF,
在△DAB與△FAC中,
,
∴△DAB≌△FAC(SAS),
∴∠B=∠ACF,
∴∠ACB+∠ACF=90°,即BC⊥CF;
②△DAB≌△FAC,
∴CF=BD,
∵BC=BD+CD,
∴BC=CF+CD;
故答案為:垂直,BC=CF+CD;
(2)CF⊥BC成立;BC=CD+CF不成立,結(jié)論:CD=CF+BC.理由如下:
∵等腰直角△ADF中,AD=AF,
∵∠BAC=∠DAF=90°,
∴∠BAD=∠CAF,
在△DAB與△FAC中,
,
∴△DAB≌△FAC(SAS),
∴∠ABD=∠ACF,
∵∠BAC=90°,AB=AC,
∴∠ACB=∠ABC=45°,
∴∠ABD=180°﹣45°=135°,
∴∠BCF=∠ACF﹣∠ACB=135°﹣45°=90°,
∴CF⊥BC.
∵CD=DB+BC,DB=CF,
∴CD=CF+BC.
(3)過(guò)A作AH⊥BC于H,過(guò)E作EM⊥BD于M如圖3所示:
∵∠BAC=90°,AB=AC=2,
∴BC=AB=4,AH=BH=CH=BC=2,
∴CD=BC=1,
∴DH=CH+CD=3,
∵四邊形ADEF是正方形,
∴AD=DE,∠ADE=90°,
∵BC⊥CF,EM⊥BD,EN⊥CF,
∴四邊形CMEN是矩形,
∴NE=CM,EM=CN,
∵∠AHD=∠ADC=∠EMD=90°,
∴∠ADH+∠EDM=∠EDM+∠DEM=90°,
∴∠ADH=∠DEM,
在△ADH與△DEM中,
,
∴△ADH≌△DEM(AAS),
∴EM=DH=3,DM=AH=2,
∴CM=EM=3,
∴CE==3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中華文明,源遠(yuǎn)流長(zhǎng),中華漢字,寓意深廣.為傳承中華優(yōu)秀傳統(tǒng)文化,某中學(xué)德育處組織了一次全校2000名學(xué)生參加的“漢字聽(tīng)寫(xiě)”大賽.為了解本次大賽的成績(jī),學(xué)校德育處隨機(jī)抽取了其中200名學(xué)生的成績(jī)作為樣本進(jìn)行統(tǒng)計(jì),制成如下不完整的統(tǒng)計(jì)圖表:
成績(jī)x(分)分?jǐn)?shù)段 | 頻數(shù)(人) | 頻率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | 40 | 0.2 |
80≤x<90 | m | 0.35 |
90≤x<100 | 50 | n |
頻數(shù)分布直方圖
根據(jù)所給的信息,回答下列問(wèn)題:
(1)m=________;n=________;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)這200名學(xué)生成績(jī)的中位數(shù)會(huì)落在________分?jǐn)?shù)段;
(4)若成績(jī)?cè)?/span>90分以上(包括90分)為“優(yōu)”等,請(qǐng)你估計(jì)該校參加本次比賽的2000名學(xué)生中成績(jī)是“優(yōu)”等的約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,.點(diǎn)從點(diǎn)出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度向終點(diǎn)運(yùn)動(dòng),過(guò)點(diǎn)作交邊或邊于點(diǎn),點(diǎn)是射線(xiàn)邊上一點(diǎn),總保持,以、為鄰邊構(gòu)造矩形,設(shè)矩形與重疊部分圖形的面積為,點(diǎn)的運(yùn)動(dòng)時(shí)間為.
(1)用含的式子表示線(xiàn)段的長(zhǎng);
(2)當(dāng)點(diǎn)落在上時(shí),求的值;
(3)當(dāng)矩形與重疊部分圖形為四邊形時(shí),求與之間的函數(shù)關(guān)系式;
(4)點(diǎn)與點(diǎn)同時(shí)出發(fā),在線(xiàn)段上以每秒5個(gè)單位長(zhǎng)度的速度沿往返一次,連結(jié)、,直接寫(xiě)出矩形的面積是的面積的2倍時(shí)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(2,1),點(diǎn)B的坐標(biāo)是(2,0) .作點(diǎn)B關(guān)于OA的對(duì)稱(chēng)點(diǎn)B′,則點(diǎn)B′的坐標(biāo)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(概念認(rèn)識(shí))
在同一個(gè)圓中兩條互相垂直且相等的弦定義為“等垂弦”,兩條弦所在直線(xiàn)的交點(diǎn)為等垂弦的分割點(diǎn).如圖①,AB、CD是⊙O的弦,AB=CD,AB⊥CD,垂足為E,則AB、CD是等垂弦,E為等垂弦AB、CD的分割點(diǎn).
(數(shù)學(xué)理解)
(1)如圖②,AB是⊙O的弦,作OC⊥OA、OD⊥OB,分別交⊙O于點(diǎn)C、D,連接CD.求證: AB、CD是⊙O的等垂弦.
(2)在⊙O中,⊙O的半徑為5,E為等垂弦AB、CD的分割點(diǎn),.求AB的長(zhǎng)度.
(問(wèn)題解決)
(3)AB、CD是⊙O的兩條弦,CD=AB,且CD⊥AB,垂足為F.
①在圖③中,利用直尺和圓規(guī)作弦CD(保留作圖痕跡,不寫(xiě)作法).
②若⊙O的半徑為r,AB=mr(m為常數(shù)),垂足F與⊙O的位置關(guān)系隨m的值變化而變化,直接寫(xiě)出點(diǎn)F與⊙O的位置關(guān)系及對(duì)應(yīng)的m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】教材呈現(xiàn):下圖是華師版八年級(jí)下冊(cè)數(shù)學(xué)教材第11頁(yè)的部分內(nèi)容.
例1,如圖,在菱形中,,試求的大小,并說(shuō)明是等邊三角形
問(wèn)題解決:請(qǐng)結(jié)合圖(1),寫(xiě)出例1的完整解答過(guò)程;
問(wèn)題探究:在菱形中,對(duì)角線(xiàn)相交于點(diǎn),過(guò)點(diǎn)D作交BC的延長(zhǎng)線(xiàn)于點(diǎn)E.
(1)如圖2,連接OE,則OE的長(zhǎng)為____________;
(2)如圖3,若點(diǎn)P是對(duì)角線(xiàn)BD上一動(dòng)點(diǎn),連結(jié),則的最小值為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】兒童用藥的劑量常常按他們的體重來(lái)計(jì)算,某種藥品,體重的兒童,每次正常服用量為;體重的兒童每次正常服用量為;體重在范圍內(nèi)時(shí),每次正常服用量是兒童體重的一次函數(shù)中,現(xiàn)實(shí)中,該藥品每次實(shí)際服用量可以比每次正常服用略高一些,但不能超過(guò)正常服用量的1.2倍,否則會(huì)對(duì)兒童的身體造成較大損害.
(1)求與之間的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍;
(2)若該藥品的一種包裝規(guī)格為/袋,求體重在什么范圍的兒童生病時(shí)可以一次服下一袋藥?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形ABCD的對(duì)角線(xiàn)相交于點(diǎn)O.DE∥AC,CE∥BD.
(1)求證:四邊形OCED是菱形;
(2)若∠ACB=30°,菱形OCED的而積為,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y=x﹣2與x軸交于點(diǎn)B,與y軸交于點(diǎn)A,拋物線(xiàn)y=ax2﹣x+c經(jīng)過(guò)A,B兩點(diǎn),與x軸的另一交點(diǎn)為C.
(1)求拋物線(xiàn)的解析式;
(2)M為拋物線(xiàn)上一點(diǎn),直線(xiàn)AM與x軸交于點(diǎn)N,當(dāng)時(shí),求點(diǎn)M的坐標(biāo);
(3)P為拋物線(xiàn)上的動(dòng)點(diǎn),連接AP,當(dāng)∠PAB與△AOB的一個(gè)內(nèi)角相等時(shí),直接寫(xiě)出點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com