(2003•海淀區(qū))某同學(xué)在測量體溫時意識到體溫計的讀數(shù)與水銀柱的長度之間可能存在著某種函數(shù)關(guān)系,就此他與同學(xué)們選擇了一種類型的體溫計,經(jīng)歷了收集數(shù)據(jù)、分析數(shù)據(jù)、得出結(jié)論的探索過程,他們收集到的數(shù)據(jù)如下:
體溫計的讀數(shù)t(℃)3536373839404142
水銀柱的長度l(mm)56.562.568.574.580.586.592.598.5
請你根據(jù)上述數(shù)據(jù)分析判斷,水銀柱的長度l(mm)與體溫計的讀數(shù)t(℃)(35≤t≤42)之間存在的函數(shù)關(guān)系是( )
A.
B.
C.
D.
【答案】分析:易得水銀柱的長度l(mm)與體溫計的讀數(shù)t(℃)成一次函數(shù),所以根據(jù)待定系數(shù)法就可以確定l與t之間的函數(shù)關(guān)系式.
解答:解:設(shè)l=kt+b(k,b為常數(shù)).
∵t=35,l=56.5;t=36,l=62.5,
,
∴k=6,b=-
∴I=6t-
點評:主要考查一次函數(shù)解決實際問題;求函數(shù)解析式一般用待定系數(shù)法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2003•海淀區(qū))已知:如圖,點A在y軸上,⊙A與x軸交于B、C兩點,與y軸交于點D(0,3)和點E(0,-1)
(1)求經(jīng)過B、E、C三點的二次函數(shù)的解析式;
(2)若經(jīng)過第一、二、三象限的一動直線切⊙A于點P(s,t),與x軸交于點M,連接PA并延長與⊙A交于點Q,設(shè)Q點的縱坐標(biāo)為y,求y關(guān)于t的函數(shù)關(guān)系式,并觀察圖形寫出自變量t的取值范圍;
(3)在(2)的條件下,當(dāng)y=0時,求切線PM的解析式,并借助函數(shù)圖象,求出(1)中拋物線在切線PM下方的點的橫坐標(biāo)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(01)(解析版) 題型:選擇題

(2003•海淀區(qū))已知反比例函數(shù)y=的圖象經(jīng)過點(1,2),則函數(shù)y=-kx可為( )
A.y=-2
B.y=-
C.y=
D.y=2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年北京市海淀區(qū)中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2003•海淀區(qū))已知反比例函數(shù)y=的圖象經(jīng)過點(1,2),則函數(shù)y=-kx可為( )
A.y=-2
B.y=-
C.y=
D.y=2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年北京市海淀區(qū)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2003•海淀區(qū)模擬)已知拋物線y=x2-(a+b)x+,其中a、b、c分別為△ABC中∠A,∠B,∠C的對邊.
(1)求證:該拋物線與x軸必有兩個不同的交點;
(2)設(shè)拋物線與x軸的兩個交點為P、Q,頂點為R,且∠PQR=α,tanα=,若△ABC的周長為10,求拋物線的解析式;
(3)設(shè)直線y=ax-bc與拋物線y=x2-(a+b)x+交于點E、F,與y軸交于點M,且拋物線對稱軸為x=a,O是坐標(biāo)原點,△MOE與△MOF的面積之比為5:1,試判斷△ABC的形狀并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案