保護(hù)生態(tài)環(huán)境,建設(shè)綠色社會(huì)已經(jīng)從理念變?yōu)槿藗兊男袆?dòng).某化工廠2009年1 月的利潤(rùn)為200萬(wàn)元.設(shè)2009年1 月為第1個(gè)月,第x個(gè)月的利潤(rùn)為y萬(wàn)元.由于排污超標(biāo),該廠決定從2009年1 月底起適當(dāng)限產(chǎn),并投入資金進(jìn)行治污改造,導(dǎo)致月利潤(rùn)明顯下降,從1月到5月,y與x成反比例.到5月底,治污改造工程順利完工,從這時(shí)起,該廠每月的利潤(rùn)比前一個(gè)月增加20萬(wàn)元(如圖).

⑴分別求該化工廠治污期間及治污改造工程完工后y與x之間對(duì)應(yīng)的函數(shù)關(guān)系式.
⑵治污改造工程完工后經(jīng)過(guò)幾個(gè)月,該廠月利潤(rùn)才能達(dá)到2009年1月的水平?
⑶當(dāng)月利潤(rùn)少于100萬(wàn)元時(shí)為該廠資金緊張期,問(wèn)該廠資金緊張期共有幾個(gè)月?

(1)
(2)200萬(wàn)
(3)6個(gè)月
⑴①當(dāng)1≤≤5時(shí),設(shè),把(1,200)代入,得,即;②當(dāng)時(shí),,所以當(dāng)>5時(shí),;
⑵當(dāng)y=200時(shí),20x-60=200,x=13,
所以治污改造工程順利完工后經(jīng)過(guò)13-5=8個(gè)月后,該廠利潤(rùn)達(dá)到200萬(wàn)元;
⑶對(duì)于,當(dāng)y=100時(shí),x=2;對(duì)于y=20x-60,當(dāng)y=100時(shí),x=8,所以資金緊張的時(shí)間為8-2=6個(gè)月
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1:直線y= kx+4k(k≠0)交x軸于點(diǎn)A,交y軸于點(diǎn)C,點(diǎn)M(2,m)為直線AC上一點(diǎn),過(guò)點(diǎn)M的直線BD交x軸于點(diǎn)B,交y軸于點(diǎn)D.

(1)求的值(用含有k的式子表示.);
(2)若SBOM =3SDOM,且k為方程(k+7)(k+5)-(k+6)(k+5=的根,求直線BD的解析式.
(3)如圖2,在(2)的條件下,P為線段OD之間的動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)O和點(diǎn)D重合),OE
上AP于E,,DF上AP于F,下列兩個(gè)結(jié)論:①值不變;②值不變,請(qǐng)你判斷其中哪一個(gè)結(jié)論是正確的,并說(shuō)明理由并求出其值,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

今年我省干旱災(zāi)情嚴(yán)重,甲地急需要抗旱用水15萬(wàn)噸,乙地13萬(wàn)噸.現(xiàn)有A、B兩水庫(kù)各調(diào)出14萬(wàn)噸水支援甲、乙兩地抗旱.從A地到甲地50千米,到乙地30千米;從B地到甲地60千米,到乙地45千米.
⑴設(shè)從A水庫(kù)調(diào)往甲地的水量為x萬(wàn)噸,完成下表

調(diào)出地

 
水量/萬(wàn)噸
 
調(diào)入地
 



總計(jì)
A
x
 
14
B
 
 
14
總計(jì)
15
13
28
⑵請(qǐng)?jiān)O(shè)計(jì)一個(gè)調(diào)運(yùn)方案,使水的調(diào)運(yùn)量盡可能小.(調(diào)運(yùn)量=調(diào)運(yùn)水的重量×調(diào)運(yùn)的距離,單位:萬(wàn)噸•千米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若一次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(—1,1)則b=      

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)y="(k+1)x" + k-1.
(1)若函數(shù)的圖象經(jīng)過(guò)原點(diǎn),求k的值;
(2)若函數(shù)的圖象經(jīng)過(guò)第一、三、四象限,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)
海安縣政府大力扶持大學(xué)生開(kāi)展創(chuàng)業(yè).王強(qiáng)在縣政府的扶持下銷(xiāo)售一種進(jìn)價(jià)為每件20元的護(hù)眼臺(tái)燈.銷(xiāo)售過(guò)程中發(fā)現(xiàn),每月銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)之間的關(guān)系可近似的看作一次函數(shù):
(1)設(shè)王強(qiáng)每月獲得利潤(rùn)為w(元),當(dāng)銷(xiāo)售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?
(2)如果王強(qiáng)想要每月獲得2000元的利潤(rùn),那么銷(xiāo)售單價(jià)應(yīng)定為多少元?
(3)根據(jù)物價(jià)部門(mén)規(guī)定,這種護(hù)眼臺(tái)燈的銷(xiāo)售單價(jià)不得高于32元,如果王強(qiáng)想要每月獲得的利潤(rùn)不低于2000元,那么他每月的成本最少需要多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖是一次函數(shù)的圖象,當(dāng)時(shí),的取值范圍是
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖12-1,已知直線y= -x+4交x軸于點(diǎn)A,交y軸于點(diǎn)B.

(1)寫(xiě)出A、B兩點(diǎn)的坐標(biāo)分別是:                                ;
(2)設(shè)點(diǎn)P是射線y = x()上一點(diǎn),點(diǎn)P的橫坐標(biāo)為t,M是OP的中點(diǎn)(O是原點(diǎn)),以PM為對(duì)角線作正方形PDME.正方形PDME與△OAB公共部分的面積為S,求S與t之間的函數(shù)關(guān)系式,并求S的最大值.(圖12-2、12-3供你探索問(wèn)題時(shí)使用)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若點(diǎn)(-4,y1),(2,y2)都在直線y=-
1
3
x+t
上,則y1與y2的大小關(guān)系是( 。
A.y1>y2B.y1=y2C.y1<y2D.無(wú)法確定

查看答案和解析>>

同步練習(xí)冊(cè)答案