【題目】如圖,已知直線y=3x﹣3分別交x軸、y軸于A、B兩點(diǎn),拋物線y=x2+bx+c經(jīng)過A、B兩點(diǎn),點(diǎn)C是拋物線與x軸的另一個交點(diǎn)(與A點(diǎn)不重合).
(1)求拋物線的解析式:
(2)求△ABC的面積;
(3)在拋物線的對稱軸上,是否存在點(diǎn)M,使△ABM周長最短?若不存在,請說明理由;若存在,求出點(diǎn)M的坐標(biāo).
【答案】
(1)
解:在y=3x﹣3中,令y=0可求得x=1,令x=0可得y=﹣3,
∴A(1,0),B(0,﹣3),
把A、B兩點(diǎn)的坐標(biāo)分別代入y=x2+bx+c得 ,解得 ,
∴拋物線解析式為y=x2+2x﹣3
(2)
解:令y=0得0=x2+2x﹣3,解得x1=1,x2=﹣3
∴C(﹣3,0),AC=4
∴S△ABC= ACOB= ×4×3=6
(3)
解:∵y=x2+2x﹣3=(x+1)2﹣4,
∴拋物線的對稱軸為x=﹣1,
∵A、C關(guān)于對稱軸對稱,
∴MA=MC,
∴MB+MA=MB+MC,
∴當(dāng)B、M、C三點(diǎn)在同一條直線上時MB+MC最小,此時△ABM的周長最小,
∴連接BC交對稱軸于點(diǎn)M,則M即為滿足條件的點(diǎn),
設(shè)直線BC的解析式為y=kx+m,
∵直線BC過點(diǎn)B(0,﹣3),C(﹣3,0),
∴ ,解得 ,
∴直線BC的解析式y(tǒng)=﹣x﹣3,
當(dāng)x=﹣1時,y=﹣2,
∴M(﹣1,﹣2),
∴存在點(diǎn)M使△ABM周長最短,其坐標(biāo)為(﹣1,﹣2)
【解析】(1)由直線解析式可求得A、B兩點(diǎn)的坐標(biāo),根據(jù)待定系數(shù)法可求得拋物線解析式;(2)由拋物線解析式可求得C點(diǎn)坐標(biāo),再根據(jù)三角形的面積可求得答案;(3)連接BC交對稱軸于點(diǎn)M,由題意可知A、C關(guān)于對稱軸對稱,則可知MA=MC,故當(dāng)B、M、C三點(diǎn)在同一條直線上時MA+MB最小,則△ABM的周長最小,由B、C坐標(biāo)可求得直線BC的解析式,則可求得M點(diǎn)的坐標(biāo).
【考點(diǎn)精析】本題主要考查了二次函數(shù)的性質(zhì)的相關(guān)知識點(diǎn),需要掌握增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】目前,某市正積極推進(jìn)“五城聯(lián)創(chuàng)”,其中擴(kuò)充改造綠地是推進(jìn)工作計(jì)劃之一.現(xiàn)有一塊直角三角形綠地,量得兩直角邊長分別為a=9m和b=12m,現(xiàn)要將此綠地?cái)U(kuò)充改造為等腰三角形,且擴(kuò)充部分包含以b=12m為直角邊的直角三角形,則擴(kuò)充后等腰三角形的周長為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)上學(xué)期的數(shù)學(xué)歷次測驗(yàn)成績?nèi)缦卤硭荆?/span>
測驗(yàn)類別 | 平時測驗(yàn) | 期中測驗(yàn) | 期末測驗(yàn) | ||
第1次 | 第2次 | 第3次 | |||
成績 | 100 | 106 | 106 | 105 | 110 |
(1)該同學(xué)上學(xué)期5次測驗(yàn)成績的眾數(shù)為 ,中位數(shù)為 ;
(2)該同學(xué)上學(xué)期數(shù)學(xué)平時成績的平均數(shù)為 ;
(3)該同學(xué)上學(xué)期的總成績是將平時測驗(yàn)的平均成績、期中測驗(yàn)成績、期末測驗(yàn)成績按照2:3:5的比例計(jì)算所得,求該同學(xué)上學(xué)期數(shù)學(xué)學(xué)科的總評成績(結(jié)果保留整數(shù))。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E,F(xiàn)分別是菱形ABCD的邊AB,AD的中點(diǎn),且AB=5,AC=6.
(1)求對角線BD的長;
(2)求證:四邊形AEOF為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知△ABC的三個頂點(diǎn)的坐標(biāo)分別為A(﹣2,3),B(﹣6,0),C(﹣1,0).
(1)請直接寫出點(diǎn)B關(guān)于點(diǎn)A對稱的點(diǎn)的坐標(biāo);
(2)將△ABC繞坐標(biāo)原點(diǎn)O逆時針旋轉(zhuǎn)90°,畫出圖形,直接寫出點(diǎn)B的對應(yīng)點(diǎn)的坐標(biāo);
(3)請直接寫出:以A、B、C為頂點(diǎn)的平行四邊形的第四個頂點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△APB與△CDP均為等邊三角形,且PA⊥PD,PA=PD.有下列三個結(jié)論:①∠PBC=15°;②AD∥BC;③直線PC與AB垂直.其中正確的有( )
A. 0個 B. 1個 C. 2個 D. 3個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上有 A、B 兩點(diǎn),所表示的有理數(shù)分別為 a、b,已知 AB=12,原點(diǎn) O 是線段AB 上的一點(diǎn),且 OA=2OB.
(1)求a,b;
(2)若動點(diǎn) P,Q 分別從 A,B 同時出發(fā),向右運(yùn)動,點(diǎn) P 的速度為每秒 2 個單位長度,點(diǎn) Q 的速度為每秒 1 個單位長度,設(shè)運(yùn)動時間為 t 秒,當(dāng)點(diǎn) P 與點(diǎn) Q 重合時,P,Q 兩點(diǎn)停止運(yùn)動.
①當(dāng) t 為何值時,2OPOQ=4;
②當(dāng)點(diǎn) P 到達(dá)點(diǎn) O 時,動點(diǎn) M 從點(diǎn) O 出發(fā),以每秒 3 個單位長度的速度也向右運(yùn)動,當(dāng)點(diǎn) M 追上點(diǎn) Q 后立即返回,以同樣的速度向點(diǎn) P 運(yùn)動,遇到點(diǎn) P 后再立即返回,以同樣的速度向點(diǎn) Q 運(yùn)動,如此往返,直到點(diǎn) P,Q 停止時,點(diǎn) M 也停止運(yùn)動,求在此過程中點(diǎn) M 行駛的總路程,并直接寫出點(diǎn) M 最后位置在數(shù)軸上所對應(yīng)的有理數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是BC上任意一點(diǎn),過點(diǎn)D分別向AB、AC引垂線,垂足分別為點(diǎn)E、F.
(1)如圖①,當(dāng)點(diǎn)D在BC的什么位置時,DE=DF?并證明;
(2)在滿足第一問的條件下,連接AD,此時圖中共有幾對全等三角形?請寫出所有的全等三角形(不必證明);
(3)如圖②,過點(diǎn)C作AB邊上的高CG,請問DE、DF、CG的長之間存在怎樣的等量關(guān)系?并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=kx和雙曲線在第一象限相交于點(diǎn)A(1,2),點(diǎn)B在y軸上,且AB⊥y軸.有一動點(diǎn)P從原點(diǎn)出發(fā)沿y軸以每秒1個單位的速度向y軸的正方向運(yùn)動,運(yùn)動時間為t秒(t>0),過點(diǎn)P作PD⊥y軸,交直線OA于點(diǎn)C,交雙曲線于點(diǎn)D.
(1)求直線y=kx和雙曲線的函數(shù)關(guān)系式;
(2)設(shè)四邊形CDAB的面積為S,當(dāng)P在線段OB上運(yùn)動時(P不與B點(diǎn)重合),求S與t之間的函數(shù)關(guān)系式;
(3)在圖中第一象限的雙曲線上是否存在點(diǎn)Q,使以A、B、C、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請求出此時t的值和Q點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com