在□ABCD中,已知AB=5,BC=,∠A=45°,以AB所在直線為x軸,A為坐標(biāo)原點(diǎn)建立直角坐標(biāo)系,將□ABCD繞A點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到□OEFG(圖1)
(1)直接寫出C﹑F兩點(diǎn)的坐標(biāo).
(2)沿x軸的負(fù)半軸以1米/秒的速度平行移動(dòng),設(shè)移動(dòng)后x秒(圖2),□ABCD與□OEFG重疊部分的面積為y,當(dāng)點(diǎn)D移動(dòng)到□OEFG的內(nèi)部時(shí),求y與x之間的關(guān)系式.
(3)若□ABCD與□OEFG同時(shí)從O點(diǎn)出發(fā),分別沿x軸、y軸的負(fù)半軸以1米/秒的速度平行移動(dòng),設(shè)移動(dòng)后x秒(如圖3),□ABCD與□OEFG重疊部分的面積為y,當(dāng)點(diǎn)D移動(dòng)到□O'EFG的內(nèi)部時(shí),求y與x之間的關(guān)系式,并求出重疊部分面積的最大值.

【答案】分析:(1)根據(jù)勾股定理和坐標(biāo)知識(shí)可求出C,F(xiàn)的坐標(biāo).
(2)因?yàn)椤螪AB=∠GOA=45°,以及重疊部分的面積可用四邊形AOHD和三角形AOF的面積來(lái)表示出來(lái),從而可求出解析式.
(3)先求出表示面積的解析式,然后根據(jù)函數(shù)的最值求解.
解答:解:(1)C(7,2),F(xiàn) (-2,7)(4分)(2)設(shè)AD、DC分別與OG、OE交于點(diǎn)F、H
∵∠DAB=∠GOA=45°S?OHDF=S?AOHD-S△AOF
∴OF=AF=OA=x,OH=2,DH=x-2
即y=AF•y==-+2x-2(2<x<4)(8分)
(3)①當(dāng)2<x≤3時(shí),DE=x-2,OA=x,
∴y=
y=-+4
當(dāng)x=3時(shí),ymax=4-
∴移動(dòng)后3秒時(shí),重疊部分面積的最大值是(11分)
②當(dāng)3<x<4時(shí),延長(zhǎng)CD與FG交于點(diǎn)Q,
QM=DQ=QN-MN,即QM=DQ=2-(x-2)=4-x
PJ=EJ=x+2-5=x-3,
∴y=2×2-y=-x2+7x-
當(dāng)x=時(shí),
∴移動(dòng)后秒時(shí),重疊部分面積的最大值是(13分)
綜上①②所述,同時(shí)從O點(diǎn)移動(dòng)秒時(shí),重疊部分面積的最大值是(14分)
點(diǎn)評(píng):本題考查了旋轉(zhuǎn)的性質(zhì),平移的性質(zhì),二次函數(shù)的性質(zhì)和最值的求法以及平行四邊形的性質(zhì)等知識(shí)點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在?ABCD中,已知點(diǎn)E和點(diǎn)F分別在AD和BC上,且AE=CF,連接CE和AF,試說(shuō)明四邊形AFCE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

19、如圖,在?ABCD中,已知∠BAD的平分線AE交BC于點(diǎn)E,AD=5cm,CE=2cm,則?ABCD的周長(zhǎng)為
16
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

12、在?ABCD中,已知AB=4cm,BC=9cm,?ABCD的面積為18cm2,則∠B是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、在?ABCD中,已知∠A=110°,則∠D=
70
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在?ABCD中,已知對(duì)角線AC和BD相交于點(diǎn)O,△AOB的周長(zhǎng)為15cm,AB=6cm,則AC+BD=(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案