如圖,拋物線與直線y=x+1交于A、C兩點(diǎn),與y軸交于B,AB∥x軸,且, D、E是直線y=x+1與坐標(biāo)軸的交點(diǎn),

(1)求拋物線的解析式;

(2)在坐標(biāo)軸上找出所有的點(diǎn)F,使△CEF與△ABD相似,直接寫出它的坐標(biāo);

(3)P為x軸上一點(diǎn),Q為此拋物線上一點(diǎn),是否存在P,使得以A、C、P、Q為頂點(diǎn)的四邊形是平行四邊形?若存在,請求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.

解:(1)∵對稱軸為直線x=-1,∴由對稱性可得AB=2

         則BD=AB=2,又∵D(0,1),∴B(0,-1),A(-2,-1)

         由得AB邊上的高線長為3,∴C(1,2)

則可求得拋物線的解析式為    

(2) F(1,0),(3,0)       

(3)設(shè)P(a,0),

若AC為邊,則Q(a+3,3)

,

∴P(,0)或(,0)  

若AC為對角線,則Q(-1-a,1)

∴∴

,

∴P(,0)或(,0)           

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線與直線y=k(x-4)都經(jīng)過坐標(biāo)軸的正半軸上A,B兩點(diǎn),該拋物線的對稱軸x精英家教網(wǎng)=-1,與x軸交于點(diǎn)C,且∠ABC=90°
求:
(1)直線AB的解析式;
(2)拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆河南省新密市興華公學(xué)九年級3月第一次摸擬考試數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,拋物線與直線AB交于x軸上的一點(diǎn)A,和另一點(diǎn)B(4,n).點(diǎn)P是拋物線A,B兩點(diǎn)間部分上的一個動點(diǎn)(不與點(diǎn)AB重合),直線PQ與直線AB垂直,交直線AB于點(diǎn)Q

(1)求拋物線的解析式和cos∠BAO的值。
(2)設(shè)點(diǎn)P的橫坐標(biāo)為用含的代數(shù)式表示線段PQ的長,并求出線段PQ長的最大值;
(3)點(diǎn)E是拋物線上一點(diǎn),過點(diǎn)E作EF∥AC,交直線AB與點(diǎn)F,若以E、F、A、C為頂點(diǎn)的四邊形為平行四邊形,直接寫出相應(yīng)的點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年安徽蚌埠六中九年級11月階段檢測數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,拋物線與直線交于C,D兩點(diǎn),其中點(diǎn)C在y軸上,點(diǎn)D的坐標(biāo)為。點(diǎn)P是y軸右側(cè)的拋物線上一動點(diǎn),過點(diǎn)P作軸于點(diǎn)E,交CD于點(diǎn)F.

(1)求拋物線的解析式;

(2)若點(diǎn)P的橫坐標(biāo)為m,當(dāng)m為何值時(shí),以O(shè),C,P,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形?請說明理由。

(3)若存在點(diǎn)P,使,請直接寫出相應(yīng)的點(diǎn)P的坐標(biāo)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年山東省東營市中考數(shù)學(xué)模擬試卷(二)(解析版) 題型:解答題

如圖,拋物線與直線AB交于點(diǎn)A(-1,0),B(4,).點(diǎn)D是拋物線A,B兩點(diǎn)間部分上的一個動點(diǎn)(不與點(diǎn)A,B重合),直線CD與y軸平行,交直線AB于點(diǎn)C,連接AD,BD.
(1)求拋物線的解析式;
(2)設(shè)點(diǎn)D的橫坐標(biāo)為m,△ADB的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并求出當(dāng)S取最大值時(shí)的點(diǎn)C的坐標(biāo);
(3)當(dāng)點(diǎn)D為拋物線的頂點(diǎn)時(shí),若點(diǎn)P是拋物線上的動點(diǎn),點(diǎn)Q是直線AB上的動點(diǎn),判斷有幾個位置能使以點(diǎn)P,Q,C,D為頂點(diǎn)的四邊形為平行四邊形,直接寫出相應(yīng)的點(diǎn)Q的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案