【題目】農(nóng)夫將蘋果樹種在正方形的果園內(nèi),為了保護蘋果樹不受風吹,他在蘋果樹的周圍種上針葉樹.在下圖里,你可以看到農(nóng)夫所種植蘋果樹的列數(shù)(n)和蘋果樹數(shù)量及針葉樹數(shù)量的規(guī)律:當n為某一個數(shù)值時,蘋果樹數(shù)量會等于針葉樹數(shù)量,則n為___________
【答案】8
【解析】
觀察圖形不難發(fā)現(xiàn),蘋果樹的棵樹為相應序號的平方,再求出各個圖形中針葉樹的棵樹,并找出規(guī)律寫出第n個圖形中的棵樹的表達式,然后列出方程求解即可.
第1個圖形中蘋果樹的棵樹是1,針葉樹的棵樹是8,
第2個圖形中蘋果樹的棵樹是4=22,針葉樹的棵樹是16=8×2,
第3個圖形中蘋果樹的棵樹是9=32,針葉樹的棵樹是24=8×3,
第4個圖形中蘋果樹的棵樹是16=42,針葉樹的棵樹是32=8×4,
…,
所以,第n個圖形中蘋果樹的棵樹是n2,針葉樹的棵樹是8n,
∵蘋果樹的棵數(shù)與針葉樹的棵數(shù)相等,
∴n2=8n,
解得n1=0(舍去),n2=8.
故答案為:8.
科目:初中數(shù)學 來源: 題型:
【題目】(1)先化簡,再求值:a(a-2b)+(a+b)2,其中a=-1,b=;
(2)若x2-5x=3,求(x-1)(2x-1)-(x+1)2+1的值.
【答案】(1)原式= 2a2+b2=2+2=4;(2)原式=4.
【解析】試題分析:(1)利用完全平方公式展開,化簡,代入求值. (2) 利用完全平方公式展開,化簡,整體代入求值.
解:(1)原式=a2-2ab+a2+2ab+b2=2a2+b2.
當a=-1,b=時,原式=2+2=4.
(2)原式=2x2-3x+1-(x2+2x+1)+1=x2-5x+1=3+1=4.
【題型】解答題
【結束】
22
【題目】已知化簡(x2+px+8)(x2-3x+q)的結果中不含x2項和x3項.
(1)求p,q的值.
(2)x2-2px+3q是否是完全平方式?如果是,請將其分解因式;如果不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為發(fā)展電信事業(yè),方便用戶,電信公司對移動電話采取不同的收費方式,其中,所使用的“便民卡”與“如意卡”在某市范圍內(nèi)每月(30天)的通話時間x(min)與通話費y(元)的關系如圖所示:
(1)分別求出通話費y1,y2與通話時間x之間的函數(shù)關系式;
(2)請幫用戶計算,在一個月內(nèi)使用哪一種卡便宜.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:如圖1,在平面直角坐標系中,點M是二次函數(shù)圖象上一點,過點M作軸,如果二次函數(shù)的圖象與關于l成軸對稱,則稱是關于點M的伴隨函數(shù)如圖2,在平面直角坐標系中,二次函數(shù)的函數(shù)表達式是,點M是二次函數(shù)圖象上一點,且點M的橫坐標為m,二次函數(shù)是關于點M的伴隨函數(shù).
若,
求的函數(shù)表達式.
點,在二次函數(shù)的圖象上,若,a的取值范圍為______.
過點M作軸,
如果,線段MN與的圖象交于點P,且MP::3,求m的值.
如圖3,二次函數(shù)的圖象在MN上方的部分記為,剩余的部分沿MN翻折得到,由和所組成的圖象記為.以、為頂點在x軸上方作正方形直接寫出正方形ABCD與G有三個公共點時m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將平行四邊形紙片ABCD按如圖方式折疊,使點C與A重合,點D落到D′處,折痕為EF.
(1)求證:△ABE≌△AD′F;
(2)連接CF,判斷四邊形AECF是什么特殊四邊形?證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,△ABC中,∠BAC=90°,AB=AC,D,E在BC上,∠DAE=45°,為了探究BD,DE,CE之間的等量關系,現(xiàn)將△AEC繞A順時針旋轉90°后成△AFB,連接DF,經(jīng)探究,你所得到的BD,DE,CE之間的等量關系式是 ;(無須證明)
(2)如圖2,在△ABC中,∠BAC=120°,AB=AC,D,E在BC上,∠DAE=60°,∠ADE=45°,試仿照(1)的方法,利用圖形的旋轉變換,探究BD,DE,CE之間的等量關系,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(﹣1,0),C(2,3)兩點,與y軸交于點N.其頂點為D.
(1)拋物線及直線AC的函數(shù)關系式;
(2)設點M(3,m),求使MN+MD的值最小時m的值;
(3)若拋物線的對稱軸與直線AC相交于點B,E為直線AC上的任意一點,過點E作EF∥BD交拋物線于點F,以B,D,E,F為頂點的四邊形能否為平行四邊形?若能,求點E的坐標;若不能,請說明理由;
(4)若P是拋物線上位于直線AC上方的一個動點,求△APC的面積的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】初二班同學從學校出發(fā)去某自然保護區(qū)研學旅行,一部分乘坐大客車先出發(fā),余下的幾人20分鐘后乘坐小轎車沿同一路線出行大客車中途停車等候,小轎車趕上來之后,大客車以出發(fā)時速度的繼續(xù)行駛,小轎車保持原速度不變小轎車司機因路線不熟錯過了景點入口,再原路提速返回,恰好與大客車同時到達景點入口兩車距學校的路程單位:千米和行駛時間單位:分鐘之間的函數(shù)關系如圖所示.
請結合圖象解決下面問題:
學校到景點的路程為______千米,大客車途中停留了______分鐘,______千米;
在小轎車司機駛過景點入口時,大客車離景點入口還有多遠?
若大客車一直以出發(fā)時的速度行駛,中途不再停車,那么小轎車折返后到達景點入口,需等待______分鐘,大客車才能到達景點入口.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是12,腰AB的垂直平分線EF分別交AB,AC于點E、F,若點D為底邊BC的中點,點M為線段EF上一動點,則△BDM的周長的最小值為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com