設(shè)a,b,c是△ABC的三邊長(zhǎng),二次函數(shù)y=(a-
b
2
)x2-cx-a-
b
2
在x=1時(shí)取最小值-
8
5
b
,則△ABC是( 。
A、等腰三角形
B、銳角三角形
C、鈍角三角形
D、直角三角形
分析:根據(jù)二次函數(shù)在對(duì)稱軸時(shí)取得最小值,然后根據(jù)題意列出方程組即可求出答案;
解答:解:由題意可得
-
-c
2(a-
b
2
)
=1
a-
b
2
-c-a-
b
2
=-
8
5
b
,
b+c=2a
c=
3
5
b
,
所以c=
3
5
b
,a=
4
5
b
,因此a2+c2=b2,
所以△ABC是直角三角形,
故選D.
點(diǎn)評(píng):本題考查了二次函數(shù)的最值,難度不大,關(guān)鍵是掌握二次函數(shù)在二次項(xiàng)系數(shù)大于0時(shí),在對(duì)稱軸處取得最小值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠A=36°,AB=AC,BD是∠ABC的平分線,設(shè)CD=a,BD=b,AB=c.
(1)猜想a,b,c之間的數(shù)量關(guān)系,并說(shuō)明理由;
(2)請(qǐng)你根據(jù)問題(1)提出一個(gè)問題,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

39、設(shè)a、b、c是三角形的三邊長(zhǎng),且a2+b2+c2=ab+bc+ca,關(guān)于此三角形的形狀有以下判斷:①是等腰三角形;②是等邊三角形;③是銳角三角形;④是斜三角形.其中正確的說(shuō)法的個(gè)數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,Rt△ABC中,∠ACB=90°,AC=4,BA=5,點(diǎn)P是AC上的動(dòng)點(diǎn)(P不與A、C重合),設(shè)PC=x,點(diǎn)P到AB的距離為y.
精英家教網(wǎng)
(1)求y與x的函數(shù)關(guān)系式;
(2)試確定Rt△ABC內(nèi)切圓I的半徑,并探求x為何值時(shí),直線PQ與這個(gè)內(nèi)切圓I相切?
(3)試判斷以P為圓心,半徑為y的圓與⊙I能否相切?若能,請(qǐng)求出相應(yīng)的x的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•石景山區(qū)一模)七名學(xué)生在一分鐘內(nèi)的跳繩個(gè)數(shù)分別是:150、140、100、110、130、110、120,設(shè)這組數(shù)據(jù)的平均數(shù)是a,中位數(shù)是b,眾數(shù)是c,則有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等邊三角形ABC的頂點(diǎn)A、C處各有一只蝸牛,它們同時(shí)出發(fā),分別以相同的速度由A向B和由C向A爬行,經(jīng)過t分鐘后,它們分別爬行到了D、E處,設(shè)DC與BE的交點(diǎn)為F.
(1)當(dāng)點(diǎn)D、E不是AB、AC的中點(diǎn)時(shí),圖中有全等三角形嗎?如果沒有,請(qǐng)說(shuō)明理由;如果有,請(qǐng)找出所有的全等三角形,并選擇其中一對(duì)進(jìn)行證明.
(2)問蝸牛在爬行過程中DC與BE所成的∠BFC的大小有無(wú)變化?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案