【題目】如下圖,隧道的截面由拋物線和矩形構(gòu)成,,隧道的最高點P位于AB的中點的正上方,且與AB的距離為4m.
建立如圖所示的坐標(biāo)系,求圖中拋物線的解析式;
若隧道為單向通行,一輛高4米、寬3米的火車能否從隧道內(nèi)通過?請說明理由.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年5月5日,中國郵政發(fā)行《馬克思誕辰200周年》紀(jì)念郵票1套2枚(如圖),這套郵票正面圖案為:馬克思像、馬克思與恩格斯像,背面完全相同.發(fā)行當(dāng)日,小宇購買了此款紀(jì)念郵票2套,他將2套郵票沿中間虛線撕開(使4枚形狀、大小完全相同)后將4枚紀(jì)念郵票背面朝上放在桌面上,并隨機(jī)從中抽出2張,則抽出的2張郵票恰好都是“馬克思像”的概率為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,且AB=12,點C為半圓上的一點.將此半圓沿BC所在的直線折疊,若圓弧BC恰好過圓心O,則圖中陰影部分的面積是( 。
A. 4πB. 5πC. 6πD. 8π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=60°,AB=4,△BCD為等邊三角形,點E為△BCD圍成的區(qū)域(包括各邊)內(nèi)的一點,過點E作EM∥AB,交直線AC于點M,作EN∥AC,交直線AB于點N,則AN+AM的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,⊙C的圓心坐標(biāo)為(1,0),半徑為1,為⊙C的直徑,若點的坐標(biāo)為(a,b)則點的坐標(biāo)為( )
A.(-a-1,-b)B.(-a+1,-b)C.(-a+2,-b)D.(-a-2,-b)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=﹣x2+x﹣1與x軸交于點A,B(點A在點B的左側(cè)),與y軸交于點C,其頂點為D.將拋物線位于直線l:y=t(t<)上方的部分沿直線l向下翻折,拋物線剩余部分與翻折后所得圖形組成一個“M”形的新圖象.
(1)點A,B,D的坐標(biāo)分別為 , , ;
(2)如圖①,拋物線翻折后,點D落在點E處.當(dāng)點E在△ABC內(nèi)(含邊界)時,求t的取值范圍;
(3)如圖②,當(dāng)t=0時,若Q是“M”形新圖象上一動點,是否存在以CQ為直徑的圓與x軸相切于點P?若存在,求出點P的坐標(biāo);若不存在,請說明理由.
[Failed to download image : http://192.168.0.10:8086/QBM/2019/5/28/2213337932849152/2214008649842688/STEM/890e59b444e5404588b8511540e03e41.png]
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,矩形ABCD的周長為64,AB=12,對角線AC的垂直平分線分別交AD、BC于E、F,連接AF、CE、EF,且EF與AC相交于點O.
(1)求證:四邊形AECF是菱形;
(2)求S△ABF與S△AEF的比值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a>0)的頂點為M,直線y=m與拋物線交于點A,B,若△AMB為等腰直角三角形,我們把拋物線上A,B兩點之間的部分與線段AB 圍成的圖形稱為該拋物線對應(yīng)的準(zhǔn)蝶形,線段AB稱為碟寬,頂點M 稱為碟頂.
(1)由定義知,取AB中點N,連結(jié)MN,MN與AB的關(guān)系是_____.
(2)拋物線y=對應(yīng)的準(zhǔn)蝶形必經(jīng)過B(m,m),則m=_____,對應(yīng)的碟寬AB是_____.
(3)拋物線y=ax2﹣4a﹣(a>0)對應(yīng)的碟寬在x 軸上,且AB=6.
①求拋物線的解析式;
②在此拋物線的對稱軸上是否有這樣的點P(xp,yp),使得∠APB為銳角,若有,請求出yp的取值范圍.若沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果點D、E分別在△ABC中的邊AB和AC上,那么不能判定DE∥BC的比例式是( 。
A. AD:DB=AE:EC B. DE:BC=AD:AB
C. BD:AB=CE:AC D. AB:AC=AD:AE
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com