如圖,雙曲線y=
kx
(x>0)
經(jīng)過(guò)四邊形OABC的頂點(diǎn)A、C,∠B=90°,OC平分OA與x軸的夾角,AB∥x軸,且S四邊形OABC=2,將△ABC沿AC翻折后得△AB′C,B′點(diǎn)落在OA上,則k=
2
2
分析:延長(zhǎng)BC,交x軸于點(diǎn)D,設(shè)點(diǎn)C(x,y),AB=a,由角平分線的性質(zhì)得,CD=CB′,則△OCD≌△OCB′,再由翻折的性質(zhì)得,BC=B′C,根據(jù)反比例函數(shù)的性質(zhì),可得出S△OCD=
1
2
k,則S△OCB′=
1
2
k,由AB∥x軸,得點(diǎn)A(x-a,2y),由題意得2y(x-a)=k,從而得出三角形ABC的面積等于
1
2
k,根據(jù)S四邊形OABC=2,即可得出答案.
解答:解:延長(zhǎng)BC,交x軸于點(diǎn)D,
設(shè)點(diǎn)C(x,y),AB=a,
∵OC平分OA與x軸正半軸的夾角,
∴CD=CB′,△OCD≌△OCB′,
再由翻折的性質(zhì)得,BC=B′C,
∴BD=2DC,
∵雙曲線y=
k
x
(x>0)經(jīng)過(guò)四邊形OABC的頂點(diǎn)A、C,
∴S△OCD=
1
2
k,
∴S△OCB′=
1
2
k,
∵AB∥x軸,BD=2DC,
∴點(diǎn)A(x-a,2y),
∴2y(x-a)=k,
∴xy-ay=
1
2
k,
∵xy=k,
∴ay=
1
2
k,
∴S△ABC=
1
2
ay=
1
4
k,
∴SOABC=S△OCB′+S△ABC+S△ABC=
1
2
k+
1
4
k+
1
4
k=2,
解得:k=2.
故答案為:2.
點(diǎn)評(píng):此題主要考查了反比例函數(shù)的綜合應(yīng)用,關(guān)鍵是根據(jù)翻折得到BC=B′C=CD,進(jìn)而表示出A點(diǎn)的坐標(biāo),表示出S△ABC=
1
4
k.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,雙曲線y=
kx
(x>0)
與直線y=mx+n在第一象限內(nèi)交于點(diǎn)A(1,5)和B(5,1),根據(jù)圖象,在第一象限內(nèi),反比例函數(shù)值大于一次函數(shù)值時(shí)x的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•揚(yáng)州)如圖,雙曲線y=
kx
經(jīng)過(guò)Rt△OMN斜邊上的點(diǎn)A,與直角邊MN相交于點(diǎn)B,已知OA=2AN,△OAB的面積為5,則k的值是
12
12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳)如圖,雙曲線y=
kx
(k>0)與⊙O在第一象限內(nèi)交于P、Q兩點(diǎn),分別過(guò)P、Q兩點(diǎn)向x軸和y軸作垂線.已知點(diǎn)P坐標(biāo)為(1,3),則圖中陰影部分的面積為
4
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,雙曲線y=
kx
交矩形OABC的邊分別于點(diǎn)D、E,若BD=2AD,且四邊形ODBE的面積為8,則k=
4
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,雙曲線y=
k
x
經(jīng)過(guò)Rt△OMN斜邊上的點(diǎn)A,與直角邊MN交于點(diǎn)B,已知OA=2AN,△OAB的面積為
5
2
,則k的值是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案