【題目】一個(gè)不透明箱子中有2個(gè)紅球,1個(gè)黑球和1個(gè)白球,四個(gè)小球的形狀、大小完全相同.

(1)從中隨機(jī)摸取1個(gè)球,則摸到黑球的概率為 ;

(2)小明和小貝做摸球游戲,游戲規(guī)則如下.

你認(rèn)為這個(gè)游戲公平嗎?請(qǐng)說明理由.

【答案】(1);(2)游戲不公平,理由見解析.

【解析】分析:(1)用黑球的個(gè)數(shù)1除以球的總數(shù)4,即可;

(2)用列表法或樹狀圖法列出所有可能發(fā)生的情況,然后分別求出小明和小貝獲勝的概率,從而可判斷該游戲是否公平.

詳解:(1)1÷(2+1+1))= ;

(2)如下表,

1

2

1

(1,紅1)

(2,紅1)

(黑,紅1)

(白,紅1)

2

(1,紅2)

(2,紅2)

(黑,紅2)

(白,紅2)

(1,黑)

(2,黑)

(黑,黑)

(白,黑)

(1,白)

(3,白)

(黑,白)

(白,白)

共有16種等可能結(jié)果,期中顏色相同的有6種,顏色不同的有10種,

所以P(小明獲勝)=P(小貝獲勝)=

∴游戲不公平

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD沿BD翻折,點(diǎn)C落在P點(diǎn)處,連接AP.若∠ABP=26°,則∠APB=___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn),頂點(diǎn)A的坐標(biāo)為(4,3)

(1)頂點(diǎn)的坐標(biāo)為( );

(2)現(xiàn)有動(dòng)點(diǎn)P、Q分別從C、A同時(shí)出發(fā),點(diǎn)P沿線段CB向終點(diǎn)B運(yùn)動(dòng),速度為每秒1個(gè)單位,點(diǎn)Q沿折線A→O→C向終點(diǎn)C運(yùn)動(dòng),速度為每秒k個(gè)單位,當(dāng)運(yùn)動(dòng)時(shí)間為2秒時(shí),以P、Q、C為頂點(diǎn)的三角形是等腰三角形,求此時(shí)k的值.

(3)若正方形OABC以每秒個(gè)單位的速度沿射線AO下滑,直至頂點(diǎn)C落到軸上時(shí)停止下

滑.設(shè)正方形OABC軸下方部分的面積為S,求S關(guān)于滑行時(shí)間的函數(shù)關(guān)系式,并寫出相應(yīng)自變量的取值范圍.

(備用圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CDAB,垂足為H,連結(jié)AC,過上一點(diǎn)EEGACCD的延長(zhǎng)線于點(diǎn)G,連結(jié)AECD于點(diǎn)F,且EG=FG,連結(jié)CE.

(1)求證:ECF∽△GCE;

(2)求證:EG是⊙O的切線;

(3)延長(zhǎng)ABGE的延長(zhǎng)線于點(diǎn)M,若tanG=,AH=3,求EM的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小高從家騎車去單位上班,先走平路到達(dá)點(diǎn)A,再走上坡路到達(dá)點(diǎn)B,最后走下坡路到達(dá)工作單位,所用的時(shí)間x(分鐘)與離家距離y(千米)的關(guān)系如圖所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分別保持和去上班時(shí)一致,那么他從單位到家需要的時(shí)間是_______分鐘.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠A=∠ABC90°,AD1,BC3,點(diǎn)E是邊CD的中點(diǎn),連接BE并延長(zhǎng)交AD的延長(zhǎng)線于點(diǎn)F,連接CF

(1)求證:四邊形BDFC是平行四邊形;

(2)CBCD,求四邊形BDFC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知A0,5), Ba,b),且a,b滿足b1

(1)如圖,求線段AB的長(zhǎng);

(2)如圖,直線CDx軸、y軸正半軸分別交于點(diǎn)C,D,∠OCD45°,第四象限的點(diǎn)Pm,n)在直線CD上,且mn=-6,求OP2OC2的值;

(3)如圖,若點(diǎn)D1,0),求∠DAO +∠BAO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)E為CD上一點(diǎn),將△BCE沿BE翻折后點(diǎn)C恰好落在AD邊上的點(diǎn)F處,將線段EF繞點(diǎn)F旋轉(zhuǎn),使點(diǎn)E落在BE上的點(diǎn)G處,連接CG.

(1)證明:四邊形CEFG是菱形;

(2)若AB=8,BC=10,求四邊形CEFG的面積;

(3)試探究當(dāng)線段AB與BC滿足什么數(shù)量關(guān)系時(shí),BG=CG,請(qǐng)寫出你的探究過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,雙曲線經(jīng)過四邊形OABC的頂點(diǎn)AC,∠ABC90°OC平分OAx軸正半軸的夾角,ABx軸,將ABC沿AC翻折后得到AB'C,B'點(diǎn)落在OA上,則四邊形OABC的面積是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案