【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A、B兩點,與y軸交于C.直線y=x+3經(jīng)過點A、C.
(1)求拋物線的解析式;
(2)P是拋物線上一動點,過P作PM∥y軸交直線AC于點M,設(shè)點P的橫坐標為t.
①若以點C、O、M、P為頂點的四邊形是平行四邊形,求t的值.
②當射線MP,AC,MO中一條射線平分另外兩條射線的夾角時,直接寫出t的值.
【答案】(1);(2)①滿足條件的t的值為2或﹣2+2或﹣2﹣2;②綜合以上可得t的值為
【解析】
(1)先根據(jù)直線解析式求出A、C兩點的坐標,把點A和C點的坐標代入y=-x2+bx+c得關(guān)于b和c的方程組,然后解方程組即可得到拋物線解析式;
(2)當OC∥PM,且OC=PM時,以點C、O、M、P為頂點的四邊形是平行四邊形,可得關(guān)于t的方程,解方程即可;
(3)分三種情況考慮,當MP平分AC、MO的夾角,當AC平分MP、MO的夾角,當MO平分AC、MP的夾角,可由圖形的性質(zhì)得關(guān)于t的方程求解.
(1)在y=x+3中,令x=0,y=3;令y=0,x=﹣4,得A(﹣4,0),C(0,3),
代入拋物線y=-x2+bx+c解析式得:,
∴拋物線的解析式;
(2)設(shè)P(t,),
∵四邊形OCMP為平行四邊形,
∴PM=OC=3,PM∥OC,
∴M點的坐標可表示為(t,t+3),
∴PM=,
∴|=3,
當﹣t2﹣3t=3,解得t=2,
當﹣t2﹣3t=﹣3,解得t1=﹣2+2,t2=﹣2﹣2,
綜上所述,滿足條件的t的值為2或﹣2+2或﹣2﹣2;
(3)如圖1,
若當MP平分AC、MO的夾角,
則∠AMN=∠OMN,
∵PN⊥OA,
∴AN=ON,
∴t的值為﹣2;
如圖2,
若AC平分MP、MO的夾角,過點C作CH⊥OA,CG⊥MP,
則CG=CH,
∵,
∴OM=OC=3,
∵點M在直線AC上,
∴M(t,t+3),
∴MN2+ON2=OM2,可得,,
解得t=﹣,
如圖3,
若MO平分AC、MP的夾角,則可得∠NMO=∠OMC,過點O作OK⊥AC,
∴OK=ON,
∵∠AKO=∠AOC=90°,∠OAK=OAC,
∴△AOK∽△ACO,
∴,
∴,
∴OK=,
∴t=﹣,
綜合以上可得t的值為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形紙片ABCD中,AB=3cm,AD=5cm,折疊紙片使B點落在邊AD上的E處,折痕為PQ,過點E作EF∥AB交PQ于F,連接BF.
(1)求證:四邊形BFEP為菱形;
(2)當點E在AD邊上移動時,折痕的端點P、Q也隨之移動;
①當點Q與點C重合時(如圖2),求菱形BFEP的邊長;
②若限定P、Q分別在邊BA、BC上移動,求出點E在邊AD上移動的最大距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,雙曲線y=(x>0)經(jīng)過△OAB的頂點A和OB的中點C,AB∥x軸,點A的坐標為(2,3),BE⊥x軸,垂足為E.
(1)確定k的值;
(2)若點D(3,m)在雙曲線上,求直線AD的解析式;
(3)計算△OAB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年3月19日,河南省教育廳發(fā)布《關(guān)于推進中小學(xué)生研學(xué)旅行的實施方案》,某中學(xué)為落實方案,給學(xué)生提供了以下五種主題式研學(xué)線路:A.“紅色河南”,B.“厚重河南”C.“出彩河南”,D.“生態(tài)河南”,E.“老家河南”為了解學(xué)生最喜歡哪一種研學(xué)線路(每人只選取一種),隨機抽取了部分學(xué)生進行調(diào)查,將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計表和統(tǒng)計圖.根據(jù)以上信息解答下列問題:
調(diào)查結(jié)果統(tǒng)計表
主題 | 人數(shù)/人 | 百分比 |
A | 75 | n% |
B | m | 30% |
C | 45 | 15% |
D | 60 | |
E | 30 |
(1)本次接受調(diào)查的總?cè)藬?shù)為 人,統(tǒng)計表中m= ,n= .
(2)補全條形統(tǒng)計圖.
(3)若把條形統(tǒng)計圖改為扇形統(tǒng)計圖,則“生態(tài)河南”主題線路所在扇形的圓心角度是 .
(4)若該實驗中學(xué)共有學(xué)生3000人,請據(jù)此估計該校最喜歡“老家河南”主題線路的學(xué)生有多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場計劃購進A,B兩種型號的手機,已知每部A型號手機的進價比每部B型號手機進價多500元,每部A型號手機的售價是2500元,每部B型號手機的售價是2100元.
(1)若商場用50000元共購進A型號手機10部,B型號手機20部,求A、B兩種型號的手機每部進價各是多少元?
(2)為了滿足市場需求,商場決定用不超過7.5萬元采購A、B兩種型號的手機共40部,且A型號手機的數(shù)量不少于B型號手機數(shù)量的2倍.
①該商場有哪幾種進貨方式?
②該商場選擇哪種進貨方式,獲得的利潤最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】大唐芙蓉園是中國第一個全方位展示盛唐風(fēng)貌的大型皇家園林式文化主題公園,全園標志性建筑一紫云樓為代表,展示了“形神升騰紫云景,天下臣服帝王心”的唐代帝王風(fēng)范(如圖①).小風(fēng)和小花等同學(xué)想用一些測量工具和所學(xué)的幾何知識測量“紫云樓”的高度,來檢驗自己掌握知識和運用知識的能力,他們經(jīng)過研究需要兩次測量:首先,在陽光下,小風(fēng)在紫云樓影子的末端C點處豎立一根標桿CD,此時,小花測得標桿CD的影長CE=2米,CD=2米;然后,小風(fēng)從C點沿BC方向走了5.4米,到達G處,在G處豎立標桿FG,接著沿BG后退到點M處時,恰好看見紫云樓頂端A,標桿頂端F在一條直線上,此時,小花測得CM=0.6米,小風(fēng)的眼睛到地面的距離HM=1.5米,FG=2米.
如圖②,已知AB⊥BM,CD⊥BM,FG⊥BM,HM⊥BM,請你根據(jù)題中提供的相關(guān)信息,求出紫云樓的高AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,點O為坐標原點,拋物線y=ax2﹣4ax﹣交x軸正半軸于點A(5,0),交y軸于點B.
(1)求拋物線的解析式;
(2)如圖1,點P為第一象限內(nèi)拋物線上一點,連接AP,將射線AP繞點A逆時針旋轉(zhuǎn)60°,與過點P且垂直于AP的直線交于點C,設(shè)點P橫坐標為t,點C的橫坐標為m,求m與t之間的函數(shù)關(guān)系式(不要求寫出t的取值范圍);
(3)如圖2,在(2)的條件下,過點C作直線交x軸于點D,在x軸上取點F,連接FP,點E為AC的中點,連接ED,若F的橫坐標為-,∠AFP=∠CDE,且∠FAP+∠ACD=180°,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com