如圖18-1所示,已知二次函數(shù)與x軸分別交于點(diǎn)A(2,0)、

B(4,0),與y軸交于點(diǎn)C(0,-8t)(t>0)

1.求a、c的值及拋物線頂點(diǎn)D的坐標(biāo)(用含t的代數(shù)式表示);

2.如圖18-1,連接AC,將△OAC沿直線AC翻折,若點(diǎn)O的對(duì)應(yīng)點(diǎn)O′恰好落在該拋物線的對(duì)稱軸上,求實(shí)數(shù)t的值;

3.如圖18-2,在正方形EFGH中,點(diǎn)E、F的坐標(biāo)分別是(4,-4)、(4,-3),邊HG位于邊EF的右側(cè).若點(diǎn)P是邊EF或邊FG上的任意一點(diǎn)(不與E、F、G重合),請(qǐng)你說(shuō)明以PA、PB、PC、PD的長(zhǎng)度為邊長(zhǎng)不能構(gòu)成平行四邊形;

4.將(3)中的正方形EFGH水平移動(dòng),若點(diǎn)P是正方形邊FG或EH上任意一點(diǎn),在水平移動(dòng)過(guò)程中,是否存在點(diǎn)P,使以PA、PB、PC、PD的長(zhǎng)度為邊長(zhǎng)構(gòu)成平行四邊形,其中PA、PB為對(duì)邊.若存在,請(qǐng)直接寫出t的值;若不存在,請(qǐng)說(shuō)明理由.

 

【答案】

 

1.把點(diǎn)A、C的坐標(biāo)(2,0)、(0,-8t)代人拋物線y=ax2-6ax+c得,

,解得  ,                  ……………………2分

該拋物線為y=x2+6tx-8t=(x-3)2 + t.

∴頂點(diǎn)D坐標(biāo)為(3,t)                               ……………………3分

2.如圖9,設(shè)拋物線對(duì)稱軸與x軸交點(diǎn)為M,則AM=1.

由題意得:O′A=OA=2.

∴O′A=2AM,∴∠O′AM=60°.

∴∠O′AC=∠OAC=60°                         

∴在Rt△OAC中:

∴OC=,

.∴.        …………………6分

3.①如圖10所示,設(shè)點(diǎn)P是邊EF上的任意一點(diǎn)

(不與點(diǎn)E、F重合),連接PM.

∵點(diǎn)E(4,-4)、F(4,-3)與點(diǎn)B(4,0)在一直線上,

點(diǎn)C在y軸上,

∴PB<4,PC≥4,∴PC>PB.

又PD>PM>PB,PA>PM>PB,

∴PB≠PA,PB≠PC,PB≠PD.

∴此時(shí)線段PA、PB、PC、PD不能構(gòu)成平行四邊形.        …………………8分

②設(shè)P是邊FG上的任意一點(diǎn)(不與點(diǎn)F、G重合),

∵點(diǎn)F的坐標(biāo)是(4,-3),點(diǎn)G的坐標(biāo)是(5,-3).

∴FB=3,,∴3≤PB≤

∵PC >4,∴PC >PB.

∴PB≠PA,PB≠PC.

∴此時(shí)線段PA、PB、PC、PD不能構(gòu)成平行四邊形.        …………………9分

4.t=或1.                               …………………12分

【解析】

因?yàn)橐阎狿A、PB為平行四邊形對(duì)邊,∴必有PA=PB.

①假設(shè)點(diǎn)P為FG與對(duì)稱軸交點(diǎn)時(shí),存在一個(gè)正數(shù)t,使得線段PA、PB、PC、PD能構(gòu)成一個(gè)平行四邊形.

如圖11所示,只有當(dāng)PC=PD時(shí),線段PA、PB、PC、PD能構(gòu)成一個(gè)平行四邊形.

∵點(diǎn)C的坐標(biāo)是(0,-8t),點(diǎn)D的坐標(biāo)是(3, t),

又點(diǎn)P的坐標(biāo)是(3,-3),

∴PC2=32+(-3+8t)2,PD2=(3+t)2

當(dāng)PC=PD時(shí),有PC2 =PD2

即 32+(-3+8t)2=(3+t)2

整理得7t2-6t+1=0,

∴解方程得t=>0滿足題意.

②假設(shè)當(dāng)點(diǎn)P為EH與對(duì)稱軸交點(diǎn)時(shí),存在一個(gè)正數(shù)t,使得線段PA、PB、PC、PD能構(gòu)成一個(gè)平行四邊形.

如圖12所示,只有當(dāng)PC=PD時(shí),線段PA、PB、PC、PD

能構(gòu)成一個(gè)平行四邊形.

∵點(diǎn)C的坐標(biāo)是(0,-8t),點(diǎn)D的坐標(biāo)是(3, t),

點(diǎn)P的坐標(biāo)是(3,-4),

∴PC2=32+(-4+8t)2,PD2=(4+t)2

當(dāng)PC=PD時(shí),有PC2 =PD2

即 32+(-4+8t)2=(4+t)2

整理得7t2-8t+1=0,

∴解方程得t =或1均大于>0滿足題意.

綜上所述,滿足題意的t=或1.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

圖1中所示的遮陽(yáng)傘,傘柄垂直于地面,其示意圖如圖2.當(dāng)傘收緊時(shí),點(diǎn)P與點(diǎn)A重合;當(dāng)傘慢慢撐開時(shí),動(dòng)點(diǎn)P由A向B移動(dòng);當(dāng)點(diǎn)P到過(guò)點(diǎn)B時(shí),傘張得最開.已知傘在撐開的過(guò)程中,總有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米
(1)求AP長(zhǎng)的取值范圍;
(2)當(dāng)∠CPN=60°時(shí),求AP的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖18-1所示,已知二次函數(shù)與x軸分別交于點(diǎn)A(2,0)、

B(4,0),與y軸交于點(diǎn)C(0,-8t)(t>0)

1.求a、c的值及拋物線頂點(diǎn)D的坐標(biāo)(用含t的代數(shù)式表示);

2.如圖18-1,連接AC,將△OAC沿直線AC翻折,若點(diǎn)O的對(duì)應(yīng)點(diǎn)O′恰好落在該拋物線的對(duì)稱軸上,求實(shí)數(shù)t的值;

3.如圖18-2,在正方形EFGH中,點(diǎn)E、F的坐標(biāo)分別是(4,-4)、(4,-3),邊HG位于邊EF的右側(cè).若點(diǎn)P是邊EF或邊FG上的任意一點(diǎn)(不與E、F、G重合),請(qǐng)你說(shuō)明以PA、PB、PC、PD的長(zhǎng)度為邊長(zhǎng)不能構(gòu)成平行四邊形;

4.將(3)中的正方形EFGH水平移動(dòng),若點(diǎn)P是正方形邊FG或EH上任意一點(diǎn),在水平移動(dòng)過(guò)程中,是否存在點(diǎn)P,使以PA、PB、PC、PD的長(zhǎng)度為邊長(zhǎng)構(gòu)成平行四邊形,其中PA、PB為對(duì)邊.若存在,請(qǐng)直接寫出t的值;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖18-1所示,已知二次函數(shù)與x軸分別交于點(diǎn)A(2,0)、
B(4,0),與y軸交于點(diǎn)C(0,-8t)(t>0)
【小題1】求a、c的值及拋物線頂點(diǎn)D的坐標(biāo)(用含t的代數(shù)式表示);
【小題2】如圖18-1,連接AC,將△OAC沿直線AC翻折,若點(diǎn)O的對(duì)應(yīng)點(diǎn)O′恰好落在該拋物線的對(duì)稱軸上,求實(shí)數(shù)t的值;
【小題3】如圖18-2,在正方形EFGH中,點(diǎn)E、F的坐標(biāo)分別是(4,-4)、(4,-3),邊HG位于邊EF的右側(cè).若點(diǎn)P是邊EF或邊FG上的任意一點(diǎn)(不與E、F、G重合),請(qǐng)你說(shuō)明以PA、PB、PC、PD的長(zhǎng)度為邊長(zhǎng)不能構(gòu)成平行四邊形;
【小題4】將(3)中的正方形EFGH水平移動(dòng),若點(diǎn)P是正方形邊FG或EH上任意一點(diǎn),在水平移動(dòng)過(guò)程中,是否存在點(diǎn)P,使以PA、PB、PC、PD的長(zhǎng)度為邊長(zhǎng)構(gòu)成平行四邊形,其中PA、PB為對(duì)邊.若存在,請(qǐng)直接寫出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆河北石家莊初中畢業(yè)班教學(xué)質(zhì)量檢測(cè)數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖18-1所示,已知二次函數(shù)與x軸分別交于點(diǎn)A(2,0)、
B(4,0),與y軸交于點(diǎn)C(0,-8t)(t>0)
【小題1】求a、c的值及拋物線頂點(diǎn)D的坐標(biāo)(用含t的代數(shù)式表示);
【小題2】如圖18-1,連接AC,將△OAC沿直線AC翻折,若點(diǎn)O的對(duì)應(yīng)點(diǎn)O′恰好落在該拋物線的對(duì)稱軸上,求實(shí)數(shù)t的值;
【小題3】如圖18-2,在正方形EFGH中,點(diǎn)E、F的坐標(biāo)分別是(4,-4)、(4,-3),邊HG位于邊EF的右側(cè).若點(diǎn)P是邊EF或邊FG上的任意一點(diǎn)(不與E、F、G重合),請(qǐng)你說(shuō)明以PA、PB、PC、PD的長(zhǎng)度為邊長(zhǎng)不能構(gòu)成平行四邊形;
【小題4】將(3)中的正方形EFGH水平移動(dòng),若點(diǎn)P是正方形邊FG或EH上任意一點(diǎn),在水平移動(dòng)過(guò)程中,是否存在點(diǎn)P,使以PA、PB、PC、PD的長(zhǎng)度為邊長(zhǎng)構(gòu)成平行四邊形,其中PA、PB為對(duì)邊.若存在,請(qǐng)直接寫出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案