【題目】定義符號(hào)max﹛a , b﹜的含義為:當(dāng)a≥b時(shí), max﹛a , b﹜=a;當(dāng)a<b時(shí),max﹛a , b﹜=b.如 max﹛2 , -3﹜=2 , max﹛-4 , -2﹜=-2,則max﹛-x2+2x+3 , |x|﹜的最小值是_________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,在內(nèi)并排不重疊放入邊長(zhǎng)為1的小正方形紙片,第一層小紙片的一條邊都在AB上,首尾兩個(gè)正方形各有一個(gè)頂點(diǎn)分別在AC、BC上,依次這樣擺放上去,則最多能擺放 個(gè)小正方形紙片.
A. 14個(gè) B. 15個(gè) C. 16個(gè) D. 17個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(探索新知)如圖1,點(diǎn)在線段上,圖中共有3條線段:、、和,若其中有一條線段的長(zhǎng)度是另一條線段長(zhǎng)度的兩倍,則稱點(diǎn)是線段的“二倍點(diǎn)”.
(1)一條線段的中點(diǎn) 這條線段的“二倍點(diǎn)”;(填“是”或“不是”)
(深入研究)如圖2,點(diǎn)表示數(shù)-10,點(diǎn)表示數(shù)20,若點(diǎn)從點(diǎn),以每秒3的速度向點(diǎn)運(yùn)動(dòng),當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為秒.
(2)點(diǎn)在運(yùn)動(dòng)過(guò)程中表示的數(shù)為 (用含的代數(shù)式表示);
(3)求為何值時(shí),點(diǎn)是線段的“二倍點(diǎn)”;
(4)同時(shí)點(diǎn)從點(diǎn)的位置開(kāi)始,以每秒2的速度向點(diǎn)運(yùn)動(dòng),并與點(diǎn)同時(shí)停止.請(qǐng)直接寫(xiě)出點(diǎn)是線段的“二倍點(diǎn)”時(shí)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)軸上,點(diǎn),點(diǎn)分別表示數(shù),則線段的長(zhǎng)度可以用表示.
例如:在數(shù)軸上點(diǎn)表示5,點(diǎn)表示2,則線段的長(zhǎng)表示為.
(1)若線段的長(zhǎng)表示為6,,則的值等于____________;
(2)已知數(shù)軸上的任意一點(diǎn)表示的數(shù)是,且的最小值是4,若,則____________;
(3)已知點(diǎn)在點(diǎn)的右邊,且,若,,試判斷的符號(hào),說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,∠C=90°,AC=BC=,將△ABC繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)60°到的位置,連接,則的長(zhǎng)為( ).
A. B. C. D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=8,BC=6.點(diǎn)P從點(diǎn)A出發(fā),沿AC以每秒1個(gè)單位的速度向終點(diǎn)C運(yùn)動(dòng);點(diǎn)Q從點(diǎn)C出發(fā),沿C-B-A以每秒2個(gè)單位的速度向終點(diǎn)A運(yùn)動(dòng).當(dāng)點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也隨之停止.點(diǎn)P、Q同時(shí)出發(fā),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒).
(1)求AB的長(zhǎng).
(2)用含t的代數(shù)式表示CP的長(zhǎng).
(3)設(shè)點(diǎn)Q到CA的距離為y,求y與t之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題背景 如圖1,在△ABC中,BC=4,AB=2AC.
問(wèn)題初探 請(qǐng)寫(xiě)出任意一對(duì)滿足條件的AB與AC的值:AB= ,AC= .
問(wèn)題再探 如圖2,在AC右側(cè)作∠CAD=∠B,交BC的延長(zhǎng)線于點(diǎn)D,求CD的長(zhǎng).
問(wèn)題解決 求△ABC的面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點(diǎn)D,DE⊥AD,交AB于點(diǎn)E,AE為⊙O的直徑.
(1)判斷BC與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)求證:△ABD∽△DBE;
(3)若cosB=,AE=4,求CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“低碳生活,綠色出行”,2017年1月,某公司向深圳市場(chǎng)新投放共享單車(chē)640輛.
(1)若1月份到4月份新投放單車(chē)數(shù)量的月平均增長(zhǎng)率相同,3月份新投放共享單車(chē)1000輛.請(qǐng)問(wèn)該公司4月份在深圳市新投放共享單車(chē)多少輛?
(2)考慮到自行車(chē)市場(chǎng)需求不斷增加,某商城準(zhǔn)備用不超過(guò)70000元的資金再購(gòu)進(jìn)A,B兩種規(guī)格的自行車(chē)100輛,已知A型的進(jìn)價(jià)為500元/輛,售價(jià)為700元/輛,B型車(chē)進(jìn)價(jià)為1000元/輛,售價(jià)為1300元/輛。假設(shè)所進(jìn)車(chē)輛全部售完,為了使利潤(rùn)最大,該商城應(yīng)如何進(jìn)貨?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com