【題目】如圖,已知正方形ABCD的邊長(zhǎng)為10cm,點(diǎn)E在邊AB上,且AE=4cm,

(1)如果點(diǎn)P在線(xiàn)段BC上以2cm/s的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線(xiàn)段CD上由C點(diǎn)向D點(diǎn)運(yùn)動(dòng).

若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)2秒后,BPE與CQP是否全等?請(qǐng)說(shuō)明理由.

若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為_(kāi)_______cm/s時(shí),在某一時(shí)刻也能夠使BPE與CQP全等.

(2)若點(diǎn)Q以中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來(lái)的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿正方形ABCD的四條邊運(yùn)動(dòng).求經(jīng)過(guò)多少秒后,點(diǎn)P與點(diǎn)Q第一次相遇,并寫(xiě)出第一次相遇點(diǎn)在何處?

【答案】(1)是,4.8;(2)經(jīng)過(guò)秒點(diǎn)P與點(diǎn)Q第一次在A點(diǎn)相遇.

【解析

試題正方形的四邊相等,四個(gè)角都是直角.(1)速度相等,運(yùn)動(dòng)的時(shí)間相等,所以距離相等,根據(jù)全等三角形的判定定理可證明.因?yàn)檫\(yùn)動(dòng)時(shí)間一樣,運(yùn)動(dòng)速度不相等,所以BPCQ,只有BP=CP時(shí)才相等,根據(jù)此可求解.

(2)知道速度,知道距離,這實(shí)際上是個(gè)追及問(wèn)題,可根據(jù)追及問(wèn)題的等量關(guān)系求解.

試題解析:(1)①∵t=1秒,

BP=CQ=4×1=4厘米,

正方形ABCD中,邊長(zhǎng)為10厘米

PC=BE=6厘米,

正方形ABCD,

∴∠B=C,

∴△BPE≌△CQP

②∵VPVQ,BPCQ,

∵△BPE≌△CQP,B=C,則BP=PC,

而B(niǎo)P=4t,CP=10-4t,

4t=10-4t

點(diǎn)P,點(diǎn)Q運(yùn)動(dòng)的時(shí)間t=秒,

vq=6÷=4.8厘米/秒.

(2)設(shè)經(jīng)過(guò)x秒后點(diǎn)P與點(diǎn)Q第一次相遇,

由題意,得4.8x-4x=30,

解得x=秒.

點(diǎn)P共運(yùn)動(dòng)了×4=150厘米

點(diǎn)P、點(diǎn)Q在A點(diǎn)相遇,

經(jīng)過(guò)秒點(diǎn)P與點(diǎn)Q第一次在A點(diǎn)相遇.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校組織一項(xiàng)公益知識(shí)競(jìng)賽,比賽規(guī)定:每個(gè)班級(jí)由2名男生、2名女生及1名班主任老師組成代表隊(duì).但參賽時(shí),每班只能有3名隊(duì)員上場(chǎng)參賽,班主任老師必須參加,另外2名隊(duì)員分別在2名男生和2名女生中各隨機(jī)抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任組成了代表隊(duì),求恰好抽到由男生甲、女生丙和這位班主任一起上場(chǎng)參賽的概率.(請(qǐng)用畫(huà)樹(shù)狀圖列表列舉等方法給出分析過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題發(fā)現(xiàn)

小明在學(xué)習(xí)魯教版八年級(jí)上冊(cè)97頁(yè)例4時(shí),受到啟發(fā)進(jìn)行如下數(shù)學(xué)實(shí)驗(yàn)操作:

如圖1,取一個(gè)銳角為45°的三角尺,把銳角頂點(diǎn)放在正方形ABCD的頂點(diǎn)D處,將三角尺繞點(diǎn)D旋轉(zhuǎn)一個(gè)角度,使三角尺的直角邊與斜邊分別交邊AB,BC于點(diǎn)E和點(diǎn)F,連接FE,在繞點(diǎn)D旋轉(zhuǎn)過(guò)程中,發(fā)現(xiàn)線(xiàn)段AE,EF,CF滿(mǎn)足EF=AE+CF的數(shù)量關(guān)系,但是不會(huì)進(jìn)行證明,數(shù)學(xué)張老師給他如下的提示:ADE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°DCE’的位置,小明畫(huà)旋轉(zhuǎn)后的圖形,利用全等的知識(shí)證明了出來(lái).你根據(jù)上面的提示畫(huà)出旋轉(zhuǎn)后的圖形,并將上面的結(jié)論進(jìn)行證明.

問(wèn)題探究

小明的探究引發(fā)了老師的興趣,老師將三角尺繞點(diǎn)D旋轉(zhuǎn)到如圖2的位置,三角尺的直角邊與斜邊分別交邊AB,BC的延長(zhǎng)線(xiàn)于點(diǎn)E和點(diǎn)F,老師問(wèn)題小明此時(shí)AE,EF,CF滿(mǎn)足什么數(shù)量關(guān)系,小明思考后說(shuō)出了正確的結(jié)論.請(qǐng)同學(xué)們直接寫(xiě)出正確結(jié)論(不用寫(xiě)出證明過(guò)程).

拓展延伸

張老師讓小明利用上面探究積累的學(xué)習(xí)經(jīng)驗(yàn),解答下面的問(wèn)題:

如圖3已知正方形ABCD,點(diǎn)E在邊AB,點(diǎn)F在邊BC,且∠EDF=45°,CD=6,AE=2,CF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是正方形,點(diǎn)GBC邊上任意一點(diǎn),DEAG于點(diǎn)E,BFDE且交AG于點(diǎn)F.

(1)如圖1,求證:AE=BF;

(2)連接DF,若tanBAG=,AB=2,求△ADF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在 6×6 的網(wǎng)格中,四邊形 ABCD 的頂點(diǎn)都在格點(diǎn)上,每個(gè)格子都是邊長(zhǎng)為 1 的正方形,建立如圖所示的平面直角坐標(biāo)系.

(1)畫(huà)出四邊形 ABCD 關(guān)于 y 軸對(duì)稱(chēng)和四邊形 A′B′C′D′(點(diǎn) A、B、C、D的對(duì)稱(chēng)點(diǎn)分別是點(diǎn) A′B′C′D′.

(2)求 A、B′、B、C 四點(diǎn)組成和四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某書(shū)店老板去圖書(shū)批發(fā)市場(chǎng)購(gòu)買(mǎi)某種圖書(shū).第一次用元購(gòu)書(shū)若干本,并按該書(shū)定價(jià)元出售,很快售完.由于該書(shū)暢銷(xiāo),第二次購(gòu)書(shū)時(shí),每本書(shū)的批發(fā)價(jià)已比第一次提高了,他用元所購(gòu)該書(shū)數(shù)量比第一次多本.

1)求兩次購(gòu)書(shū)的價(jià)格分別是多少?

2)若第二次購(gòu)書(shū)按定價(jià)售出本時(shí),出現(xiàn)滯銷(xiāo),于是決定打折出售剩下這批書(shū),那么該商家最低打幾折才能保證剩下書(shū)的利潤(rùn)率不低于?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知雙曲線(xiàn)y=(x0)和y=(x0),直線(xiàn)OA與雙曲線(xiàn)y=交于點(diǎn)A,將直線(xiàn)OA向下平移與雙曲線(xiàn)y=交于點(diǎn)B,與y軸交于點(diǎn)P,與雙曲線(xiàn)y=交于點(diǎn)C,SABC=6,=,則k=( 。

A. ﹣6 B. ﹣4 C. 6 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,給出了格點(diǎn)△ABC和△DEF(頂點(diǎn)為網(wǎng)格線(xiàn)的交點(diǎn)),以及過(guò)格點(diǎn)的直線(xiàn)l

(1)將△ABC向右平移兩個(gè)單位長(zhǎng)度,再向下平移兩個(gè)單位長(zhǎng)度,畫(huà)出平移后的三角形.

(2)畫(huà)出△DEF關(guān)于直線(xiàn)l對(duì)稱(chēng)的三角形.

(3)填空:∠C+∠E   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,D為AB邊上一點(diǎn),E為CD中點(diǎn),AC=,∠ABC=30°,∠A=∠BED=45°,則BD的長(zhǎng)為(  )

A. B. +1﹣ C. D. ﹣1

查看答案和解析>>

同步練習(xí)冊(cè)答案