【題目】如圖,在直角坐標系中,正方形OABC的頂點O與原點重合,頂點A,C分別在x軸,y軸上,反比例函數(shù)的圖象與正方形的兩邊AB,BC分別交于點M,N,ND⊥x軸,垂足為D,連接OM,ON,MN.下列結(jié)論:①△OCN≌△OAM;②ON=MN;③四邊形DAMN與△MON面積相等;④若∠MON=45°,MN=2,則點C的坐標為(0, +1).其中正確結(jié)論的序號是____________.
【答案】①③④
【解析】試題解析:設(shè)反比例函數(shù)的解析式為:
∵點M、N都在的圖象上,
∴ 即
∵四邊形ABCO為正方形,
∴
∴NC=AM,
∴△OCN≌△OAM, ∴①正確;
∵△OCN≌△OAM,∴ON=OM,
∵k的值不能確定,
∴∠MON的值不能確定,
∴△ONM只能為等腰三角形,不能確定為等邊三角形,
∴ON≠MN,
∴②錯誤;
∵
而S△OND+S四邊形DAMN=S△OAM+S△OMN,
∴四邊形DAMN與△MON面積相等,
∴③正確;
作NE⊥OM于E點,如圖所示:
∵,∴△ONE為等腰直角三角形,
∴NE=OE,
設(shè)NE=x,則
∴
∴
在Rt△NEM中,MN=2,
∵ 即
∴
∴
∵CN=AM,CB=AB,
∴BN=BM,
∴△BMN為等腰直角三角形,
∴
設(shè)正方形ABCO的邊長為a,則
在Rt△OCN中,
∴ 解得 (舍去),
∴
∴C點坐標為
∴④正確.
故答案為:①③④.
科目:初中數(shù)學 來源: 題型:
【題目】下列圖形都是由相同的小正方形按照一定規(guī)律擺放而成,其中第1個圖共有3個小正方形,第2個圖共有8個小正方形,第3個圖共有15個小正方形,第4個圖共有24個小正方形,…,照此規(guī)律排列下去,則第8個圖中小正方形的個數(shù)是( )
A. 48B. 63C. 80D. 99
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司計劃購買A,B兩種型號的機器人搬運材料.已知A型機器人比B型機器人每小時多搬運30kg材料,且A型機器人搬運1000kg材料所用的時間與B型機器人搬運800kg材料所用的時間相同.
(1)求A,B兩種型號的機器人每小時分別搬運多少材料;
(2)該公司計劃采購A,B兩種型號的機器人共20臺,要求每小時搬運材料不得少于2800kg,則至少購進A型機器人多少臺?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,為坐標原點,點(0,1),點(1,0),正方形的兩條對角線的交點為,延長至點,使.延長至點,使,以,為鄰邊做正方形.
(Ⅰ)如圖①,求的長及的值;
(Ⅱ)如圖②,正方形固定,將正方形繞點逆時針旋轉(zhuǎn),得正方形,記旋轉(zhuǎn)角為(0°<<360°),連接.
①旋轉(zhuǎn)過程中,當90°時,求的大;
②在旋轉(zhuǎn)過程中,求的長取最大值時,點的坐標及此時的大。ㄖ苯訉懗鼋Y(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線.
(Ⅰ)若拋物線的頂點為(-2,-4),拋物線經(jīng)過點(-4,0).
①求該拋物線的解析式;
②連接,把所在直線沿軸向上平移,使它經(jīng)過原點,得到直線,點是直線上一動點.
設(shè)以點, , , 為頂點的四邊形的面積為,點的橫坐標為,當≤≤時,求的取值范圍;
(Ⅱ)若>0, >1,當時, ,當0<<時, >0,試比較與1的大小,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,P是對角線AC上一點(不與點A、C重合),連接PD,過點P作PE⊥PD交射線BC于點E.
(1)如圖1,求證:PD=PE;
(2)若正方形ABCD的邊長為4,,求CE長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】教師辦公室有一種可以自動加熱的飲水機,該飲水機的工作程序是:放滿水后,接通電源,則自動開始加熱,每分鐘水溫上升10 ℃,待加熱到100 ℃,飲水機自動停止加熱,水溫開始下降,水溫y(℃)和通電時間x(min)成反比例函數(shù)關(guān)系,直至水溫降至室溫,飲水機再次自動加熱,重復上述過程.設(shè)某天水溫和室溫均為20 ℃,接通電源后,水溫y(℃)和通電時間x(min)之間的關(guān)系如圖所示,回答下列問題:
(1)分別求出當0≤x≤8和8<x≤a時,y和x之間的函數(shù)關(guān)系式;
(2)求出圖中a的值;
(3)李老師這天早上7:30將飲水機電源打開,若他想在8:10上課前喝到不低于40 ℃的開水,則他需要在什么時間段內(nèi)接水?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點O為坐標原點,直線y=﹣x+12與x軸,y軸分別相交于點A,B,∠ABO的平分線與x軸相交于點C.
(1)如圖1,求點C的坐標;
(2)如圖2,點D,E,F(xiàn)分別在線段BC,AB,OB上(點D,E,F(xiàn)都不與點B重合),連接DE,DF,EF,且∠EDF+∠OBC=90°,求證:∠FED=∠AED;
(3)如圖3,在(2)的條件下,延長線段FE與x軸相交于點G,連接DG,若∠CGD=∠FGD,BF:BE=5:8,求直線DF的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點O為坐標原點,拋物線與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,點B的坐標為(3,0),直線經(jīng)過B、C兩點.
(1)求拋物線的解析式;
(2)點P是x軸下方拋物線上一點,連接AC,過點P作PQ∥AC交BC于點Q,過點Q作x軸的平行線,過點P作y軸的平行線,兩條直線相交于點K,PK交BC于點H,設(shè)QK的長為t,PH的長為d,求d與t之間的函數(shù)關(guān)系式;(不要求寫出自變量t的取值范圍)
(3)在(2)的條件下,PK交x軸于點R,過點R作RT⊥PQ,垂足為T,當PK=PT時,將線段QT繞點Q逆時針旋轉(zhuǎn)90得到線段QL,M是線段PQ上一動點,過點M作直線AC的垂線,垂足為N,連接ON、ML,當ML∥ON時,求N點坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com