如圖,已知PA、PB是⊙O的兩條切線,A、B是切點,連接OP.
(1)求證:PA=PB;
(2)若⊙O的半徑為2,PA=2,求陰影部分面積.

【答案】分析:(1)連接OA、OB,利用切線的性質(zhì)和全等三角形的證明方法證明Rt△PAO≌Rt△PBO即可;
(2)利用三角形的面積公式及扇形的面積公式求出四邊形PAOB的面積與扇形OAB的面積,兩者相減即可求出陰影部分的面積.
解答:(1)證明:連接OA、OB,
∵PA、PB是⊙O的兩條切線,A、B是切點,
∴∠OAP=∠OBP=90°.
又∵OA=OB,
在Rt△PAO和Rt△PBO中,
∵PO=PO,OA=OB,
∴Rt△PAO≌Rt△PBO(HL).
∴PA=PB;
(2)解:由(1)知△PAO≌△PBO,
∴∠APO=∠BPO,∠AOP=∠BOP.
在Rt△PAO中,OA=2,PA=2
tan∠APO==,
∴∠APO=30°,∠AOP=60°.
∴∠AOB=120°,
S陰影=S四邊形APBO-S扇形=2S△PAO-S扇形=2××2×2-=4-
點評:此題考查了切線的性質(zhì),直角三角形的性質(zhì)及陰影部分面積的求法.陰影部分面積的求法是:規(guī)則圖形根據(jù)面積公式來求;不規(guī)則圖形采用“割補(bǔ)湊正法”,即將不規(guī)則的圖形通過割補(bǔ)拼湊成一個或幾個規(guī)則的圖形,從而求出陰影部分面積.遇到切線,往往連接圓心與切點,構(gòu)造直角三角形來解題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖,已知PA,PB分別切⊙O于點A、B,∠P=60°,PA=8,那么弦AB的長是
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、如圖,已知PA、PB切⊙O于點A、B,OP交AB于C,則圖中能用字母表示的直角共有(  )個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知PA、PB都是⊙O的切線,A、B為切點,且∠APB=60°.若點C是⊙O異于A、B的任意一點,則∠ACB=(  )
A、60°B、120°C、60°或120°D、不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知PA、PB是⊙O的切線,A、B為切點,AC是⊙O的直徑,∠P=40°,則∠BAC的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•錦州二模)如圖,已知PA、PB是⊙O的兩條切線,A、B是切點,連接OP.
(1)求證:PA=PB;
(2)若⊙O的半徑為2,PA=2
3
,求陰影部分面積.

查看答案和解析>>

同步練習(xí)冊答案