【題目】如圖,四邊形ABCD是正方形,E、F分別是了AB、AD上的一點,且BF⊥CE,垂足為G,求證:AF=BE.
【答案】證明:∵四邊形ABCD是正方形, ∴AB=BC,∠A=∠CBE=90°,
∵BF⊥CE,
∴∠BCE+∠CBG=90°,
∵∠ABF+∠CBG=90°,
∴∠BCE=∠ABF,
在△BCE和△ABF中
,
∴△BCE≌△ABF(ASA),
∴BE=AF.
【解析】直接利用已知得出∠BCE=∠ABF,進(jìn)而利用全等三角形的判定與性質(zhì)得出AF=BE.
【考點精析】本題主要考查了正方形的性質(zhì)的相關(guān)知識點,需要掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作:小明準(zhǔn)備制作棱長為1cm的正方體紙盒,現(xiàn)選用一些廢棄的紙片進(jìn)行如下設(shè)計:
說明:
方案一:圖形中的圓過點A、B、C;
方案二:直角三角形的兩直角邊與展開圖左下角的正方形邊重合,斜邊經(jīng)過兩個正方形的頂點
紙片利用率= ×100%
發(fā)現(xiàn):
(1)方案一中的點A、B恰好為該圓一直徑的兩個端點.你認(rèn)為小明的這個發(fā)現(xiàn)是否正確,請說明理由.
(2)小明通過計算,發(fā)現(xiàn)方案一中紙片的利用率僅約為38.2%.請幫忙計算方案二的利用率,并寫出求解過程.
探究:
(3)小明感覺上面兩個方案的利用率均偏低,又進(jìn)行了新的設(shè)計(方案三),請直接寫出方案三的利用率.
說明:方案三中的每條邊均過其中兩個正方形的頂點.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在平面直角從標(biāo)系中,A點坐標(biāo)為(0,4),B點坐標(biāo)為(2,0),C(m,6)為反比例函數(shù) 圖象上一點.將△AOB繞B點旋轉(zhuǎn)至△A′O′B處.
(1)求m的值;
(2)若O′落在OC上,連接AA′交OC與D點.①求證:四邊形ACA′O′為平行四邊形; ②求CD的長度;
(3)直接寫出當(dāng)AO′最短和最長時A′點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB為⊙O直徑,AC是⊙O的弦,∠BAC的平分線AD交⊙O于D,過點D作DE⊥AC交AC的延長線于點E,OE交AD于點F,cos∠BAC=
(1)求證:DE是⊙O的切線;
(2)若AF=8,求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)圖象的頂點坐標(biāo)為C(1,0),直線y=x+m與該二次函數(shù)的圖象交于A、B兩點,其中A點的坐標(biāo)為(3,4),B點在y軸上.
(1)求m的值及這個二次函數(shù)的關(guān)系式;
(2)P為線段AB上的一個動點(點P與A、B不重合),過P作x軸的垂線與這個二次函數(shù)的圖象交于點E,設(shè)線段PE的長為h,點P的橫坐標(biāo)為x,求h與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)D為直線AB與這個二次函數(shù)圖象對稱軸的交點,在線段AB上是否存在一點P,使得四邊形DCEP是平行四邊形?若存在,請求出此時P點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,弦CD與直徑AB相交于點F.點E在⊙O外,做直線AE,且∠EAC=∠D
(1)求證:直線AE是⊙O的切線.
(2)若∠BAC=30°,BC=4,cos∠BAD= ,CF= ,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AB=10cm,BC=8cm,點P從點A沿AC向點C以1cm/s的速度運動,同時點Q從點C沿CB向點B以2cm/s的速度運動(點Q運動到點B停止),在運動過程中,四邊形PABQ的面積最小值為( )
A.19cm2
B.16cm2
C.15cm2
D.12cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,O點在BC邊上,∠BAC的平分線交⊙O于點D,連接BD、CD,過點D作BC的平行線,與AB的延長線相交于點P.
(1)求證:PD是⊙O的切線;
(2)求證:△PBD∽△DCA;
(3)當(dāng)AB=6,AC=8時,求線段PB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(﹣1,0),點B的坐標(biāo)為(4,0),經(jīng)過點A點B拋物線y=x2+bx+c與y軸交于點C.
(1)求拋物線的關(guān)系式;
(2)△ABC的外接圓與軸交于點D,在拋物線上是否存在點M使S△MBC=S△DBC , 若存在,請求出點M的坐標(biāo).
(3)點P是直線y=﹣x上一個動點,連接PB,PC,當(dāng)PB+PC+PO最小時,求點P的坐標(biāo)及其最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com