【題目】如圖,直線y=x+b與雙曲線y= (k為常數(shù),k≠0)在第一象限內(nèi)交于點A(1,2),且與x軸、y軸分別交于B,C兩點.
(1)求直線和雙曲線的解析式;
(2)點P在x軸上,且△BCP的面積等于2,求P點的坐標.

【答案】
(1)解:把A(1,2)代入雙曲線y= ,可得k=2,

∴雙曲線的解析式為y= ;

把A(1,2)代入直線y=x+b,可得b=1,

∴直線的解析式為y=x+1


(2)解:設P點的坐標為(x,0),

在y=x+1中,令y=0,則x=﹣1;令x=0,則y=1,

∴B(﹣1,0),C(0,1),即BO=1=CO,

∵△BCP的面積等于2,

BP×CO=2,即 |x﹣(﹣1)|×1=2,

解得x=3或﹣5,

∴P點的坐標為(3,0)或(﹣5,0)


【解析】(1)把A(1,2)代入雙曲線以及直線y=x+b,分別可得k,b的值;(2)先根據(jù)直線解析式得到BO=CO=1,再根據(jù)△BCP的面積等于2,即可得到P的坐標.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,E是BC上一點,連接AE,將矩形沿AE翻折,使點B落在CD邊F處,連接AF,在AF上取點O,以O為圓心,OF長為半徑作⊙O與AD相切于點P.若AB=6,BC=3 ,則下列結(jié)論:①F是CD的中點;②⊙O的半徑是2;③AE= CE;④S陰影= .其中正確結(jié)論的序號是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:Rt△EFP和矩形ABCD如圖①擺放(點P與點B重合),點F,B(P),C在同一直線上,AB=EF=6cm,BC=FP=8cm,∠EFP=90°,如圖②,△EFP從圖①的位置出發(fā),沿BC方向勻速運動,速度為1cm/s,EP與AB交于點G;同時,點Q從點C出發(fā),沿CD方向勻速運動,速度為1cm/s.過點Q作QM⊥BD,垂足為H,交AD于點M,連接AF,F(xiàn)Q,當點Q停止運動時,△EFQ也停止運動.設運動時間為t(s)(0<t<6),解答下列問題:

(1)當t為何值時,PQ∥BD?
(2)設五邊形AFPQM的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;
(3)在運動過程中,是否存在某一時刻t,使S五邊形AFPQM:S矩形ABCD=9:8?若存在,求出t的值;若不存在,請說明理由.
(4)在運動過程中,是否存在某一時刻t,使點M在線段PG的垂直平分線上?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,M是AC邊上的一點,連接BM.將△ABC沿AC翻折,使點B落在點D處,當DM∥AB時,求證:四邊形ABMD是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中BC=2,AB=2 ,AC=b,且關(guān)于x的方程x2﹣4x+b=0有兩個相等的實數(shù)根,則AC邊上的中線長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,D、E分別是邊AB、AC的中點,則△ADE與△ABC的面積比S△ADE:S△ABC=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2016年5月份,某市測得一周大氣的PM2.5的日均值(單位:微克/立方米)如下:31,35,31,33,30,33,31.對于這組數(shù)據(jù)下列說法正確的是( )
A.眾數(shù)是30
B.中位數(shù)是31
C.平均數(shù)是33
D.方差是32

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,將兩張等寬的長方形紙條交叉疊放,重疊部分是一個四邊形ABCD,若AD=6cm,∠ABC=60°,則四邊形ABCD的面積等于cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,△ABC與△CDE是等腰直角三角形,直角邊AC、CD在同一條直線上,點M、N分別是斜邊AB、DE的中點,點P為AD的中點,連接AE、BD.
(1)猜想PM與PN的數(shù)量關(guān)系及位置關(guān)系,請直接寫出結(jié)論;
(2)現(xiàn)將圖①中的△CDE繞著點C順時針旋轉(zhuǎn)α(0°<α<90°),得到圖②,AE與MP、BD分別交于點G、H.請判斷(1)中的結(jié)論是否成立?若成立,請證明;若不成立,請說明理由;

(3)若圖②中的等腰直角三角形變成直角三角形,使BC=kAC,CD=kCE,如圖③,寫出PM與PN的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

同步練習冊答案