【題目】用適當(dāng)方法解下列方程
(1)x(x+4)=8x+12
(2)(x+3)2=25(x﹣1)2
(3)(x+1)(x+8)=﹣12
(4)x4﹣x2﹣6=0.
【答案】
(1)解:x(x+4)=8x+12,
整理得:x2﹣4x﹣12=0,
(x+2)(x﹣6)=0,
x+2=0,x﹣6=0,
x1=﹣2,x2=6
(2)解:(x+3)2=25(x﹣1)2
x+3=±5(x﹣1),
(3)解:(x+1)(x+8)=﹣12
整理得:x2+9x+20=0,
(x+5)(x+4)=0,
x+5=0,x+4=0,
x1=﹣5,x2=﹣4
(4)解:x4﹣x2﹣6=0,
(x2﹣3)(x2+2)=0,
x2﹣3=0,
【解析】(1)整理后分解因式,即可得出兩個(gè)一元一次方程,求出方程的解即可;(2)兩邊開方,即可得出兩個(gè)一元一次方程,求出方程的解即可;(3)整理后分解因式,即可得出兩個(gè)一元一次方程,求出方程的解即可;(4)先分解因式,即可得出一個(gè)一元二次方程,求出方程的解即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解因式分解法的相關(guān)知識(shí),掌握已知未知先分離,因式分解是其次.調(diào)整系數(shù)等互反,和差積套恒等式.完全平方等常數(shù),間接配方顯優(yōu)勢(shì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊△ABC中,D是邊AC上一點(diǎn),連接BD,將△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC=5,BD=4.則下列四個(gè)結(jié)論:①AE∥BC;②∠ADE=∠BDC;③△BDE是等邊三角形;④△AED的周長(zhǎng)是9.其中正確的結(jié)論是(把你認(rèn)為正確結(jié)論的序號(hào)都填上.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2﹣4x﹣5與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,點(diǎn)D是直線BC下方拋物線上一點(diǎn),過點(diǎn)D作y軸的平行線,與直線BC相交于點(diǎn)E.
(1)求直線BC的解析式;
(2)當(dāng)線段DE的長(zhǎng)度最大時(shí),求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象與x軸交于點(diǎn)(﹣2,0),(x1 , 0),且1<x1<2,與y軸的正半軸的交點(diǎn)在(0,2)的下方.下列結(jié)論:①4a﹣2b+c=0;②a<b<0;③2a+c>0;④2a﹣b+1<0.其中正確結(jié)論有 . (填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖拋物線y=ax2+3ax+c(a>0)與y軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè).點(diǎn)B的坐標(biāo)為(1,0),OC=3OB.
(1)求拋物線的解析式;
(2)若點(diǎn)D是線段AC下方拋物線上的動(dòng)點(diǎn),求四邊形ABCD面積的最大值;
(3)若點(diǎn)E在x軸上,點(diǎn)P在拋物線上.是否存在以A,C,E,P為頂點(diǎn)且以AC為一邊的平行四邊形?若存在,寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C為線段AB上一點(diǎn),△ACM、△CBN是等邊三角形,直線AN、MC交于點(diǎn)E,直線BM、CN交于點(diǎn)F.
(1)求證:AN=MB;
(2)求證:△CEF為等邊三角形;
(3)將△ACM繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)90°,其它條件不變,在圖②中補(bǔ)出符合要求的圖形,并判斷(1)題中的結(jié)論是否依然成立,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,點(diǎn)P從點(diǎn)A出發(fā)沿邊AC向點(diǎn)C以1cm/s的速度移動(dòng),點(diǎn)Q從C點(diǎn)出發(fā)沿CB邊向點(diǎn)B以2cm/s的速度移動(dòng).
(1)如果P、Q同時(shí)出發(fā),幾秒鐘后,可使△PCQ的面積為8平方厘米?
(2)是否存在某一時(shí)刻,使△PCQ的面積等于△ABC面積的一半,并說明理由.
(3)點(diǎn)P、Q在移動(dòng)過程中,是否存在某一時(shí)刻,使得△PCQ的面積達(dá)到最大值,并說明利理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀理解下面的例題,再按要求解答下列問題:
例題:解一元二次不等式x2﹣4>0
解:∵x2﹣4=(x+2)(x﹣2)
∴x2﹣4>0可化為
(x+2)(x﹣2)>0
由有理數(shù)的乘法法則“兩數(shù)相乘,同號(hào)得正”,得
解不等式組①,得x>2,
解不等式組②,得x<﹣2,
∴(x+2)(x﹣2)>0的解集為x>2或x<﹣2,
即一元二次不等式x2﹣4>0的解集為x>2或x<﹣2.
(1)一元二次不等式x2﹣16>0的解集為;
(2)分式不等式 的解集為;
(3)解一元二次不等式2x2﹣3x<0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為13,以CD為斜邊向外作Rt△CDE,若點(diǎn)A到CE的距離為17,則CE= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com