如圖,要設(shè)計(jì)一個(gè)矩形的花壇,花壇長(zhǎng)60 m,寬40 m,有兩條縱向甬道和一條橫向甬道,橫向甬道的兩側(cè)有兩個(gè)半圓環(huán)形甬道,半圓環(huán)形甬道的內(nèi)半圓的半徑為10 m,橫向甬道的寬度是其它各甬道寬度的2倍.設(shè)橫向甬道的寬為2x m.(π的值取3)

(1)用含x的式子表示兩個(gè)半圓環(huán)形甬道的面積之和;
(2)當(dāng)所有甬道的面積之和比矩形面積的多36 m2時(shí),求x的值.

(1)π(10+x)2-π×102=3x2+60x(m2);(2)2

解析試題分析:(1)由于半圓環(huán)形甬道的內(nèi)半圓的半徑為10m,橫向甬道的寬度是其它各甬道寬度的2倍,而橫向甬道的寬為2x,由此得到半圓環(huán)形甬道的外半圓的半徑為(10+x)m,然后利用圓的面積公式即可求出兩個(gè)半圓環(huán)形甬道的面積之和;
(2)首先用x表示所有甬道的面積之和,然后根據(jù)已知條件的關(guān)于x的方程,解方程即可求解
試題解析:(1)兩個(gè)半圓環(huán)形甬道的面積=π(10+x)2-π×102=3x2+60x(m2);
(2)依題意,得40×x×2+60×2x―2x2×2+3x2+60x =×60×40+36
整理得x2―260x+516=0,解得x1=2,x2=258(不符合題意,舍去)
∴x = 2.
考點(diǎn):二次函數(shù)的應(yīng)用

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)
(1)求證:不論a為何實(shí)數(shù),此函數(shù)圖象與x軸總有兩個(gè)交點(diǎn).
(2)設(shè)a<0,當(dāng)此函數(shù)圖象與x軸的兩個(gè)交點(diǎn)的距離為時(shí),求出此二次函數(shù)的解析式.
(3)在(2)的條件下,若此二次函數(shù)圖象與x軸交于A、B兩點(diǎn),在函數(shù)圖象上是否存在點(diǎn)P,使得△PAB的面積為,若存在求出P點(diǎn)坐標(biāo),若不存在請(qǐng)說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線軸相交于點(diǎn)(﹣1,0)、(3,0),與軸相交于點(diǎn),點(diǎn)為線段上的動(dòng)點(diǎn)(不與重合),過點(diǎn)垂直于軸的直線與拋物線及線段分別交于點(diǎn)、,點(diǎn)軸正半軸上,=2,連接、

(1)求拋物線的解析式;
(2)當(dāng)四邊形是平行四邊形時(shí),求點(diǎn)的坐標(biāo);
(3)過點(diǎn)的直線將(2)中的平行四邊形分成面積相等的兩部分,求這條直線的解析式.(不必說明平分平行四邊形面積的理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,曲線是函數(shù)在第一象限內(nèi)的圖象,拋物線是函數(shù)的圖象.點(diǎn))在曲線上,且都是整數(shù).

(1)求出所有的點(diǎn);
(2)在中任取兩點(diǎn)作直線,求所有不同直線的條數(shù);
(3)從(2)的所有直線中任取一條直線,求所取直線與拋物線有公共點(diǎn)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(,0),連結(jié)OA,將線段OA繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)120°,得到線段OB.

(1)請(qǐng)直接寫出點(diǎn)B的坐標(biāo);
(2)求經(jīng)過A、O、B三點(diǎn)的拋物線的解析式;
(3)如果點(diǎn)P是(2)中的拋物線上的動(dòng)點(diǎn),且在x軸的上方,那么△PAB是否有最大面積?若有,求出此時(shí)P點(diǎn)的坐標(biāo)及△PAB的最大面積;若沒有,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,-3),點(diǎn)P是直線BC下方拋物線上的一個(gè)動(dòng)點(diǎn).

(1)求二次函數(shù)解析式;
(2)連接PO,PC,并將△POC沿y軸對(duì)折,得到四邊形.是否存在點(diǎn)P,使四邊形為菱形?若存在,求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖1,已知拋物線C經(jīng)過原點(diǎn),對(duì)稱軸與拋物線相交于第三象限的點(diǎn)M,與x軸相交于點(diǎn)N,且。

(1)求拋物線C的解析式;
(2)將拋物線C繞原點(diǎn)O旋轉(zhuǎn)1800得到拋物線,拋物線與x軸的另一交點(diǎn)為A,B為拋物線上橫坐標(biāo)為2的點(diǎn)。
①若P為線段AB上一動(dòng)點(diǎn),PD⊥y軸于點(diǎn)D,求△APD面積的最大值;
②過線段OA上的兩點(diǎn)E、F分別作x軸的垂線,交折線O-B-A于E1、F1,再分別以線段EE1、FF1為邊作如圖2所示的等邊△AE1E2、等邊△AF1F2,點(diǎn)E以每秒1個(gè)長(zhǎng)度單位的速度從點(diǎn)O向點(diǎn)A運(yùn)動(dòng),點(diǎn)F以每秒1個(gè)長(zhǎng)度單位的速度從點(diǎn)A向點(diǎn)O運(yùn)動(dòng),當(dāng)△AE1E2有一邊與△AF1F2的某一邊在同一直線上時(shí),求時(shí)間t的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,A、B為x軸上兩點(diǎn),C、D為y軸上的兩點(diǎn),經(jīng)
過點(diǎn)A、C、B的拋物線的一部分C1與經(jīng)過點(diǎn)A、D、B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封
閉曲線稱為“蛋線”.已知點(diǎn)C的坐標(biāo)為(0,),點(diǎn)M是拋物線C2<0)的頂點(diǎn).

(1)求A、B兩點(diǎn)的坐標(biāo);
(2)“蛋線”在第四象限上是否存在一點(diǎn)P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請(qǐng)說明理由;
(3)當(dāng)△BDM為直角三角形時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知△OAB的頂點(diǎn)A(﹣6,0),B(0,2),O是坐標(biāo)原點(diǎn),將△OAB繞點(diǎn)O按順時(shí)針旋轉(zhuǎn)90°,得到△ODC.

(1)寫出C,D兩點(diǎn)的坐標(biāo);
(2)求過A,D,C三點(diǎn)的拋物線的解析式,并求此拋物線頂點(diǎn)E的坐標(biāo);
(3)證明AB⊥BE.

查看答案和解析>>

同步練習(xí)冊(cè)答案