【題目】如圖,矩形ABCD中,AB=5,BC=8,點E為AD上一個動點,把△ABE沿BE折疊,點A的對應點為點F,連接DF,連接CF.當點F落在矩形內(nèi)部,且CF=CD時,AE的長為( ).
A. 3B. 2.5C. 2D. 1.5
【答案】B
【解析】
過點F作FM⊥BC于點M,延長MF交AD于點N,可得四邊形ABMN是矩形,
.因為AB=CD=BF=CF=5,所以△BFC是等腰三角形,由三線合一可得BM=5,由勾股定理可得MF=3,從而求得FN=2,設AE=x,則AE=x=EF,EN=AN-AE=4-x,在Rt△EFN中,因為EF2=EN2+NF2,所以x2=(4-x)2+22,從而解得:x=2.5.
解:過點F作FM⊥BC于點M,延長MF交AD于點N,由折疊知Rt△ABE≌△FBE,AB=FB=5,AE=FE,
又∵CF=CD=5
∴BM=CM=4,
Rt△BMF中,MF= ==3,
∵∠A=∠B=∠BMN=90°
∴四邊形ABMN是矩形,MN=AB=5,AN=BM=4,NF=MN-MF=5-3=2,
設AE=x,則AE=x=EF,EN=AN-AE=4-x,
Rt△EFN中,∵EF2=EN2+NF2
∴x2=(4-x)2+22,解得:x=2.5
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】為了解某中學學生課余生活情況,對喜愛看課外書、體育活動、看電視、社會實踐四個方面的人數(shù)進行調(diào)查統(tǒng)計.現(xiàn)從該校隨機抽取名學生作為樣本,采用問卷調(diào)查的方法收集數(shù)據(jù)(參與問卷調(diào)查的每名學生只能選擇其中一項).并根據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計圖.由圖中提供的信息,解答下列問題:
(1)求n的值;
(2)若該校學生共有1200人,試估計該校喜愛看電視的學生人數(shù);
(3)若調(diào)查到喜愛體育活動的4名學生中有3名男生和1名女生,現(xiàn)從這4名學生中任意抽取2名學生,求恰好抽到2名男生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥DC,AB=AD,對角線AC,BD交于點O,AC平分∠BAD,過點C作CE⊥AB交AB的延長線于點E,連接OE.
(1)求證:四邊形ABCD是菱形;
(2)若AB=,BD=2,求OE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+4x+m.
(1)如果二次函數(shù)的圖象與x軸有兩個交點,求m的取值范圍;
(2)如圖,二次函數(shù)的圖象過點A(6,0),與y軸交于點B,點p是二次函數(shù)對稱軸上的一個動點,當PB+PA的值最小時,求p的坐標
(3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商品的進價為每件30元,售價為每件40元,每周可賣出180件;如果每件商品的售價每上漲1元,則每周就會少賣出5件,但每件售價不能高于50元,設每件商品的售價上漲x元(x為整數(shù)),每周的銷售利潤為y元.
(1)求y與x的函數(shù)關系式,并直接寫出自變量x的取值范圍;
(2)每件商品的售價為多少元時,每周可獲得最大利潤?最大利潤是多少?
(3)每件商品的售價定為多少元時,每周的利潤恰好是2145元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形OABC是矩形,ADEF是正方形,點A,D在x軸的正半軸,點C在y軸的正半軸上,點F在AB上,點B,E是雙曲線y1=與直線y2=mx+n的交點,OA=2,OC=6.
(1)求k的值;
(2)求正方形ADEF的邊長;
(3)直接寫出不等式>mx+n的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某汽車在路面上朝正東方向勻速行駛,在A處觀測到樓H在北偏東60°方向上,行駛1小時后到達B處,此時觀測到樓H在北偏東30°北方向上,那么汽車由B處到達離樓H距離最近的位置C時,需要繼續(xù)行駛的時間為( )
A. 60分鐘B. 30分鐘C. 15分鐘D. 45分鐘
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,過x軸正半軸上的任意一點P,作y軸的平行線,分別與反比例函數(shù)y=﹣和y=的圖象交于A、B兩點.若點C是y軸上任意一點,連接AC、BC,則△ABC的面積為( )
A. 3B. 4C. 5D. 10
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com