已知:如圖,AD=BC,AC=BD.求證:OD=OC.

證明:連接AB
在△ADB與△ACB中

∴△ADB≌△ACB
∴∠D=∠C
在△ADO和△BCO中,

∴△ADO≌△BCO
∴OC=OD.
分析:先利用SSS判定△ADB≌△ACB,從而得出對應(yīng)角∠D=∠C,再利用AAS判定△ADO≌△BCO,從而得出對應(yīng)邊相等,即OC=OD.
點評:此題考查了全等三角形的判定及性質(zhì)的運用.添加輔助線是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

27、已知:如圖,AD∥BC,ED∥BF,且AF=CE.
求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、已知,如圖,AD∥BC,∠1=∠2,∠A=120°,且BD⊥CD,求∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,AD=BC,AC=BD.試判斷OD、OC的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,AD∥BC,∠A=90°,AD=BE,∠EDC=∠ECD,請你說明下列結(jié)論成立的理由:(1)△AED≌△BCE,(2)AB=AD+BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

根據(jù)題意填空:
已知,如圖,AD∥BC,∠BAD=∠BCD,求證:AB∥CD.
證明:∵AD∥BC(已知)
∴∠1=
∠2(兩直線平行,內(nèi)錯角相等),
∠2(兩直線平行,內(nèi)錯角相等),

又∵∠BAD=∠BCD ( 已知 )
∴∠BAD-∠1=∠BCD-∠2
(等式的性質(zhì))
(等式的性質(zhì))

即:∠3=∠4
AB∥CD(內(nèi)錯角相等,兩直線平行)
AB∥CD(內(nèi)錯角相等,兩直線平行)

查看答案和解析>>

同步練習(xí)冊答案