已知:如圖,DE⊥AC,BF⊥AC,且DC=AB,DC∥AB,AE=CF
求證:△ADE≌△CBF.
分析:由DC與AB平行且相等,得到四邊形ABCD為平行四邊形,利用平行四邊形的對(duì)邊相等得到AD=BC,再直角三角形ADE與直角三角形CBF中,利用HL即可得證.
解答:證明:∵DC=AB,DC∥AB,
∴四邊形ABCD為平行四邊形,
∴AD=BC,
∵DE⊥AC,BF⊥AC,
∴∠AED=∠BFC=90°,
在Rt△ADE和Rt△CBF,
AD=BC
AE=CF

∴Rt△ADE≌Rt△CBF(HL).
點(diǎn)評(píng):此題考查了全等三角形的判定,熟練掌握全等三角形的判定方法是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,DE是△ABC的中位線,若AD=4,AE=5,BC=12,則△ADE的周長(zhǎng)為( 。
A、7.5B、15C、30D、24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,DE∥BC,且
AD
DB
=
2
3
,那么△ADE與△ABC的面積比S△ADE:S△ABC=( 。
A、2:5B、2:3
C、4:9D、4:25

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

16、請(qǐng)把下列證明過程補(bǔ)充完整:
已知:如圖,DE∥BC,BE平分∠ABC.求證:∠1=∠3.
證明:因?yàn)锽E平分∠ABC(已知),
所以∠1=
∠2
(角平分線性質(zhì)).
又因?yàn)镈E∥BC(已知),
所以∠2=
∠3
(兩直線平行,同位角相等).
所以∠1=∠3(角平分線性質(zhì)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,DE∥BC交BA的延長(zhǎng)線于D,交CA的延長(zhǎng)線于E,AD=4,DB=12,DE=3.求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,DE⊥AC,∠AGF=∠ABC,∠1=20°,∠2=160°,試判斷BF與AC的位置關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案