如圖,△ABC的外接圓的圓心坐標(biāo)是
(-2,-1)
(-2,-1)
分析:本題可先設(shè)圓心坐標(biāo)為(x,y),再根據(jù)“三角形外接圓的圓心到三角形三頂點(diǎn)的距離相等”列出等式,化簡(jiǎn)即可得出圓心的坐標(biāo).
解答:解:設(shè)圓心坐標(biāo)為(x,y),由圖示知,A(0,3),B(2,1),C(2,-3),
則有,
(0-x)2+(3-y)2
=
(2-x)2+(1-y)2
=
(2-x)2+(-3-y)2
,
即(0-x)2+(3-y)2=(2-x)2+(1-y)2=(2-x)2+(-3-y)2
化簡(jiǎn)后得,x=-2,y=-1,即圓心坐標(biāo)為(-2,-1).
故答案是:(-2,-1).
點(diǎn)評(píng):本題考查了三角形外接圓的性質(zhì)和兩點(diǎn)之間的距離公式.解此類題目時(shí)要注意運(yùn)用三角形的外接圓圓心到三角形三點(diǎn)的距離相等這一性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,半圓O為△ABC的外接半圓,AC為直徑,D為劣弧
BC
上的一動(dòng)點(diǎn),P在CB的延長(zhǎng)線上,且有∠BAP=∠BDA.求證:AP是半圓O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•沙灣區(qū)模擬)如圖,△ABC的外接⊙O的半徑為R,高為AD,∠BAC的平分線交⊙O、BC于E、P,EF切⊙O交AC的延長(zhǎng)線于F.
下列結(jié)論:①AC•AB=2R•AD;②EF∥BC;③CF•AC=EF•CP;④
CP
BP
=
SinB
SinF

請(qǐng)你把正確結(jié)論的番號(hào)都寫上
①②③④
①②③④
.(填錯(cuò)一個(gè)該題得0分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙O是△ABC的
外接
外接
圓,△ABC是⊙O的
內(nèi)接
內(nèi)接
,點(diǎn)O是△ABC的
外心
外心
,它是
三邊垂直平分線段
三邊垂直平分線段
的交點(diǎn),到三角形
三個(gè)頂點(diǎn)
三個(gè)頂點(diǎn)
的距離相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖,△ABC的外接⊙O的半徑為R,高為AD,∠BAC的平分線交⊙O、BC于E、P,EF切⊙O交AC的延長(zhǎng)線于F.
下列結(jié)論:①AC•AB=2R•AD;②EF∥BC;③CF•AC=EF•CP;④數(shù)學(xué)公式
請(qǐng)你把正確結(jié)論的番號(hào)都寫上________.(填錯(cuò)一個(gè)該題得0分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年四川省樂山市沙灣區(qū)中考數(shù)學(xué)調(diào)研試卷(解析版) 題型:填空題

如圖,△ABC的外接⊙O的半徑為R,高為AD,∠BAC的平分線交⊙O、BC于E、P,EF切⊙O交AC的延長(zhǎng)線于F.
下列結(jié)論:①AC•AB=2R•AD;②EF∥BC;③CF•AC=EF•CP;④
請(qǐng)你把正確結(jié)論的番號(hào)都寫上    .(填錯(cuò)一個(gè)該題得0分)

查看答案和解析>>

同步練習(xí)冊(cè)答案