【題目】東?h是世界水晶之都,某水晶產(chǎn)業(yè)大戶經(jīng)銷一種水晶新產(chǎn)品,現(xiàn)準(zhǔn)備從國內(nèi)和國外兩種銷售方案中選擇一種進(jìn)行銷售,若只在國內(nèi)銷售,銷售價(jià)格y(元/件)與月銷售x(件)的函數(shù)關(guān)系式為y=﹣x+180,成本為30/件,無論銷售多少,每月還需支出廣告費(fèi)6250元,設(shè)月利潤為w1(元),若只在國外銷售,銷售價(jià)格為180/件,受各種不確定因素影響,成本為a/件(a為常數(shù),20≤a≤60),當(dāng)月銷售量為x(件)時(shí),每月還需繳納x2元的附加費(fèi),設(shè)月利潤為w2(元).

(1)當(dāng)x=1000時(shí),y=   /件,w1=   元.

(2)分別求出w1,w2x間的函數(shù)關(guān)系式(不必寫x的取值范圍).

(3)當(dāng)x為何值時(shí),在國內(nèi)銷售的月利潤最大?若在國外銷售月利潤的最大值與國內(nèi)銷售月利潤最大值相同,求a的值.(參考數(shù)據(jù):≈1.4,≈1.7,≈2.2).

【答案】(1)80,43750;(2)w1=﹣x2+150x﹣6250,w2=(180﹣a)x﹣x2;(3)當(dāng)x750時(shí),在國內(nèi)銷售的利潤最大,若在國外銷售月利潤的最大值與國內(nèi)銷售月利潤最大值相同,a的值為40.

【解析】

(1)x=1000代入函數(shù)關(guān)系式求得y,并根據(jù)等量關(guān)系“利潤=銷售額-成本-廣告費(fèi)” 求得;

(2)根據(jù)等量關(guān)系 “利潤=銷售額-成本-廣告費(fèi)” “利潤=銷售額-成本-附加費(fèi)”列出兩個(gè)函數(shù)關(guān)系式;

(3)對(duì)函數(shù)的函數(shù)關(guān)系式求得最大值,再求出的最大值并令二者相等求得a.

解:(1)根據(jù)題意得:w1=(y﹣30)x﹣6250=﹣x2+150x﹣6250,

x=1000代入y=﹣x+180得:y=﹣×1000+180=80,

x=1000代入w1=﹣x2+150x﹣6250得:w1=﹣×10002+150×1000﹣6250=43750

故答案為:80,43750,

(2)由(1)可知:w1=﹣x2+150x﹣6250,

由題意得:w2=(180﹣a)x﹣x2,

(3)w1=﹣x2+150x﹣6250=﹣(x﹣750)2+50000,

當(dāng)x=750時(shí),w1取到最大值50000,

根據(jù)題意得:w2(最大)==50000,

解得:a1=320(舍去),a2=40,

故當(dāng)x750時(shí),在國內(nèi)銷售的利潤最大,若在國外銷售月利潤的最大值與國內(nèi)銷售月利潤最大值相同,a的值為40.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖給出下列五個(gè)等量關(guān)系

ABAC;②BDCD;③∠BAD=∠CAD;④∠B=∠C90°;⑤∠BDA=∠CDA

請(qǐng)你以其中兩個(gè)為條件,另三個(gè)中的一個(gè)為結(jié)論,寫出一個(gè)正確命題(只需寫出一種情況),并加以證明.

解:我選作為題設(shè)的等量關(guān)系是:   、   

作為正確結(jié)論的等量關(guān)系是   

證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB、C、P四點(diǎn)均在邊長為1的小正方形網(wǎng)格格點(diǎn)上

(1)判斷PBAABC是否相似,并說明理由;

(2)BAC的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn),的頂點(diǎn)的坐標(biāo)分別為,,并且滿足,

1)求兩點(diǎn)的坐標(biāo).

2)把沿著軸折疊得到,動(dòng)點(diǎn)從點(diǎn)出發(fā)沿射線以每秒個(gè)單位的速度運(yùn)動(dòng).設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為秒,的面積為,請(qǐng)用含有的式子表示

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊中,分別為的中點(diǎn),延長至點(diǎn),使,連結(jié)

1)求證:

2)猜想:的面積與四邊形的面積的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“足球運(yùn)球”是中考體育必考項(xiàng)目之一.蘭州市某學(xué)校為了解今年九年級(jí)學(xué)生足球運(yùn)球的掌握情況,隨機(jī)抽取部分九年級(jí)學(xué)生足球運(yùn)球的測(cè)試成績(jī)作為一個(gè)樣本,按A,B,C,D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),制成了如下不完整的統(tǒng)計(jì)圖.(說明:A級(jí):8分﹣10分,B級(jí):7分﹣7.9分,C級(jí):6分﹣6.9分,D級(jí):1分﹣5.9分)

根據(jù)所給信息,解答以下問題:

(1)在扇形統(tǒng)計(jì)圖中,C對(duì)應(yīng)的扇形的圓心角是   度;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)所抽取學(xué)生的足球運(yùn)球測(cè)試成績(jī)的中位數(shù)會(huì)落在   等級(jí);

(4)該校九年級(jí)有300名學(xué)生,請(qǐng)估計(jì)足球運(yùn)球測(cè)試成績(jī)達(dá)到A級(jí)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊中,點(diǎn),分別在邊上.

1)如圖,若,以為邊作等邊于點(diǎn),連接

求證:①

平分

2)如圖,若,作的延長線于點(diǎn),求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象交x軸于點(diǎn)B6,0),交正比例函數(shù)的圖象于點(diǎn)A,且點(diǎn)A的橫坐標(biāo)為4,SABO12.求一次函數(shù)和正比例函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCAC=BC,點(diǎn)DEAB邊上,連接CDCE

(1)如圖1,如果ACB=90°,把線段CD逆時(shí)針旋轉(zhuǎn)90°,得到線段CF,連接BF,

求證:ACD≌△BCF;

DCE=45° 求證:DE2=AD2+BE2;

(2)如圖2,如果ACB=60°DCE=30°,用等式表示AD,DEBE三條線段的數(shù)量關(guān)系,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案