已知:拋物線y=ax2+bx+4的對稱軸為x=-1,且與x軸相交于點A、B,與y軸相交于精英家教網(wǎng)點C,其中點A的坐標(biāo)為(-3,0),
(1)求該拋物線的解析式;
(2)若該拋物線的頂點為D,求△ACD的面積.
分析:(1)由拋物線y=ax2+bx+4的對稱軸為x=-1,與x軸相交于點A(-3,0),利用待定系數(shù)法即可求得該拋物線的解析式;
(2)由D是拋物線y=-
4
3
x2-
8
3
x+4的頂點,即可求得D的坐標(biāo),然后設(shè)AC與拋物線對稱軸的交點為E,即可求得DE的長,然后由S△ACD=S△CDE+S△ADE求得答案.
解答:精英家教網(wǎng)解:(1)由題意得
-
b
2a
=-1
9a-3b+4=0
,
解得:
a=-
4
3
b=-
8
3
,
∴拋物線的解析式為y=-
4
3
x2-
8
3
x+4;(4分)

(2)D是拋物線y=-
4
3
x2-
8
3
x+4的頂點,
∴點D的坐標(biāo)為(-1,
16
3
),
設(shè)AC的解析式為:y=kx+b,
則:
-3k+b=0
b=4
,
解得:
k=
4
3
b=4
,
∴直線AC的解析式為:y=
4
3
x+4,
則AC與拋物線對稱軸的交點E的坐標(biāo)為:(-1,
8
3
),
∴DE=
16
3
-
8
3
=
8
3

∴S△ACD=S△CDE+S△ADE=
1
2
×
8
3
×2+
1
2
×
8
3
×1=4.(4分)
點評:此題考查了待定系數(shù)法求函數(shù)的解析式與三角形面積的求解方法,難度不大,解題的關(guān)鍵是方程思想與數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:拋物線y=x2-(a+b)x+
c2
4
,其中a、b、c是△ABC的∠A、∠B、∠C的對邊.
(1)求證:拋物線與x軸必有兩個不同交點;
(2)設(shè)直線y=ax-bc與拋物線交于E、F兩點,與y軸交于點M,拋物線與y軸交于點N,若拋物線的對稱軸為x=a,△MNE與△MNF的面積比為5:1,求證:△ABC是等邊三角形;
(3)在(2)的條件下,設(shè)△ABC的面積為
3
,拋物線與x軸交于點P、Q,問是否精英家教網(wǎng)存在過P、Q兩點且與y軸相切的圓?若存在,求出圓的圓心坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:拋物線y=ax2+bx+c(a≠0)的圖象經(jīng)過點(1,0),一條直線y=ax+b,它們的系數(shù)之間滿足如下關(guān)系:a>b>c.
(1)求證:拋物線與直線一定有兩個不同的交點;
(2)設(shè)拋物線與直線的兩個交點為A、B,過A、B分別作x軸的垂線,垂足分別為A1、B1.令k=
c
a
,試問:是否存在實數(shù)k,使線段A1B1的長為4
2
.如果存在,求出k的值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•貴陽)已知:直線y=ax+b過拋物線y=-x2-2x+3的頂點P,如圖所示.
(1)頂點P的坐標(biāo)是
(-1,4)
(-1,4)
;
(2)若直線y=ax+b經(jīng)過另一點A(0,11),求出該直線的表達(dá)式;
(3)在(2)的條件下,若有一條直線y=mx+n與直線y=ax+b關(guān)于x軸成軸對稱,求直線y=mx+n與拋物線y=-x2-2x+3的交點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:拋物線數(shù)學(xué)公式,其中a、b、c是△ABC的∠A、∠B、∠C的對邊.
(1)求證:拋物線與x軸必有兩個不同交點;
(2)設(shè)直線y=ax-bc與拋物線交于E、F兩點,與y軸交于點M,拋物線與y軸交于點N,若拋物線的對稱軸為x=a,△MNE與△MNF的面積比為5:1,求證:△ABC是等邊三角形;
(3)在(2)的條件下,設(shè)△ABC的面積為數(shù)學(xué)公式,拋物線與x軸交于點P、Q,問是否存在過P、Q兩點且與y軸相切的圓?若存在,求出圓的圓心坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年四川省綿陽市南山中學(xué)自主招生考試數(shù)學(xué)試卷(解析版) 題型:解答題

已知:拋物線,其中a、b、c是△ABC的∠A、∠B、∠C的對邊.
(1)求證:拋物線與x軸必有兩個不同交點;
(2)設(shè)直線y=ax-bc與拋物線交于E、F兩點,與y軸交于點M,拋物線與y軸交于點N,若拋物線的對稱軸為x=a,△MNE與△MNF的面積比為5:1,求證:△ABC是等邊三角形;
(3)在(2)的條件下,設(shè)△ABC的面積為,拋物線與x軸交于點P、Q,問是否存在過P、Q兩點且與y軸相切的圓?若存在,求出圓的圓心坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案