(a≠0)成立嗎?說明理由.

 

【答案】

成立,

【解析】

試題分析:根據(jù)冪的乘方公式(amn=amn即可判斷.

(a≠0)成立。

考點(diǎn):本題考查的是冪的乘方

點(diǎn)評:解答本題的關(guān)鍵是熟練掌握冪的乘方公式(amn=amn

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

30、正方形ABCD中對角線AC、BD相交于點(diǎn)O,E是AC上一點(diǎn),F(xiàn)是OB上一點(diǎn),且OE=OF,回答下列問題:

(1)在圖中1,可以通過平移、旋轉(zhuǎn)、翻折中的哪一種方法,使△OAF變到△OBE的位置.請說出其變化過程.
(2)指出圖(1)中AF和BE之間的關(guān)系,并證明你的結(jié)論.
(3)若點(diǎn)E、F分別運(yùn)動到OB、OC的延長線上,且OE=OF(如圖2),則(2)中的結(jié)論仍然成立嗎?若成立,請證明你的結(jié)論;若不成立,請說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、小明說,在一個三角形中,如果兩個角不相等,那么這兩個角所對的邊也不相等,你認(rèn)為這個結(jié)論成立嗎?如果成立,你能證明它?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖1,D是△ABC的BC邊上的中點(diǎn),過點(diǎn)D的一條直線交AC于F,交BA的延長線于E,AG∥BC交EF于G,我們可以證明EG•DC=ED•AG成立(不要求考生證明).
(1)如圖2,若將圖1中的過點(diǎn)D的一條直線交AC于F,改為交CA的延長線于F,交BA的延長線于E,改為交BA于E,其它條件不變,則EG•DC=ED•AG還成立嗎?如果成立,請給出證明;如果不成立,請說出理由;
(2)根據(jù)圖2,請你找出EG、FD、ED、FG四條線段之間的關(guān)系,并給出證明;
(3)如圖3,若將圖1中的過點(diǎn)D的一條直線交AC于F,改為交CA的反向延長線于F,交BA的延長線于E,改為交BA于E,其它條件不變,則(2)得到的結(jié)論是否成立?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

我們學(xué)習(xí)了“弧、弦、圓心角的關(guān)系”,實(shí)際上我們還可以得到“圓心角、弧、弦、弦心距之間的關(guān)系”如下:圓心角、弧、弦、弦心距之間的關(guān)系:在同圓或等圓中,如果兩個圓心角i兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們對應(yīng)的其余各組量也相等.(弦心距指從圓心到弦的距離(如圖(1)中的OC、OC′),弦心距也可以說成圓心到弦的垂線段的長度.)
請直接運(yùn)用圓心角、弧、弦、弦心距之間的關(guān)系解答下列問題.
如圖(2),O是∠EPF的平分線上一點(diǎn),以點(diǎn)O為圓心的圓與角的兩邊分別交子點(diǎn)A、B、C、D.
(1)求證:AB=CD;
(2)若角的頂點(diǎn)P在圓上或圓內(nèi),上述結(jié)論還成立嗎?若不成立,請說明理由;若成立,請加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,B、C、E三點(diǎn)在一條直線上,△ABC和△DCE都為等邊三角形,連接AE、DB.

(1)試說出AE=BD的理由.
(2)如果把△DCE繞C點(diǎn)順時針旋轉(zhuǎn)一個角度,使B、C、E不在一條直線上,(1)中的結(jié)論還成立嗎?(只回答,不說理由)
(3)在(2)中若AE、BD相交于P,求∠APB的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案