“引葭赴岸”是《九章算術(shù)》中的一道題:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊.問水深,葭長各幾何?”題意是:有一個邊長為10尺的正方形池塘,一棵蘆葦AB生長在它的中央,高出水面BC為l尺.如果把該蘆葦沿與水池邊垂直的方向拉向岸邊,那么蘆葦?shù)捻敳緽恰好碰到岸邊的B'(如圖).問水深和蘆葦長各多少?(畫出幾何圖形并解答)

解:依題意畫出圖形,設(shè)蘆葦長AB=AB′=x尺,則水深A(yù)C=(x-1)尺,
因?yàn)锽'E=10尺,所以B'C=5尺
在Rt△AB'C中,52+(x-1)2=x2
解之得x=13,
即蘆葦長13尺,水深12尺.
分析:我們可以將其轉(zhuǎn)化為數(shù)學(xué)幾何圖形,如圖所示,根據(jù)題意,可知EB'的長為10尺,則B'C=5尺,設(shè)出AB=AB'=x尺,表示出水深A(yù)C,根據(jù)勾股定理建立方程,求出的方程的解即可得到蘆葦?shù)拈L和水深.
點(diǎn)評:此題主要考查學(xué)生對題意的理解,熟悉數(shù)形結(jié)合的解題思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

27、“引葭赴岸”是《九章算術(shù)》中的一道題:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊.問水深,葭長各幾何?”題意是:有一個邊長為1O尺的正方形池塘,一棵蘆葦AB生長在它的中央,高出水面BC為l尺.如果把該蘆葦沿與水池邊垂直的方向拉向岸邊,那么蘆葦?shù)捻敳緽恰好碰到岸邊的B'(如圖).問水深和蘆葦長各多少?(畫出幾何圖形并解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:044

《九章算術(shù)》中的“引葭赴岸”問題:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊.問水深,葭長各幾何?”

題意是:有一個邊長為10尺的正方形池塘,一棵蘆葦AB生長在它的中央,高出水面部分BC為1尺.如果把該蘆葦沿與水池邊垂直的方向拉向岸邊,那么蘆葦?shù)捻敳緽恰好碰到岸邊的,(如圖).問水深和蘆葦長各多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

我國古代算書《九章算術(shù)》中第九章第六題是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊,問水深葭長各幾何?你讀懂題意了嗎?請回答水深________尺,葭長________尺.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步題 題型:解答題

成書于公元一世紀(jì)的我國經(jīng)典數(shù)學(xué)著作《九章算術(shù)》中有這樣一道名題,就是“引葭赴岸”問題,題目是:
“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,適馬岸齊,問水深,葭長各幾何?”
題意是:有一正方形池塘,邊長為一丈,有棵蘆葦長在它的正中央,高出水面部分有一尺長,把蘆葦拉向岸邊,恰好碰到岸沿,問水深和蘆葦長各是多少?

查看答案和解析>>

同步練習(xí)冊答案