【題目】如圖,已知在△ABC中,CE是外角∠ACD的平分線,BE是∠ABC的平分線.

(1)求證:∠A2E,以下是小明的證明過程,請在括號里填寫理由.

證明:∵∠ACD是△ABC的一個外角,∠2是△BCE的一個外角,(已知)

∴∠ACD=∠ABC+A,∠2=∠1+E(_________)

∴∠A=∠ACD﹣∠ABC,∠E=∠2﹣∠1(等式的性質(zhì))

CE是外角∠ACD的平分線,BE是∠ABC的平分線(已知)

∴∠ACD22,∠ABC21(_______)

∴∠A2221(_________)

2(2﹣∠1)(_________)

2E(等量代換)

(2)如果∠A=∠ABC,求證:CEAB

【答案】(1)見解析;(2)證明見解析.

【解析】

1)根據(jù)角平分線的性質(zhì)以及三角形外角的性質(zhì)即可求證;

2)由(1)可知:∠A2E,由于∠A=∠ABC,∠ABC2ABE,所以∠E=∠ABE,從而可證ABCE

解:(1)∵∠ACDABC的一個外角,∠2BCE的一個外角,(已知),

∴∠ACD=∠ABC+A,∠2=∠1+E(三角形外角的性質(zhì)),

∴∠A=∠ACD﹣∠ABC,∠E=∠2﹣∠1(等式的性質(zhì)),

CE是外角∠ACD的平分線,BE是∠ABC的平分線(已知),

∴∠ACD22,∠ABC21(角平分線的性質(zhì) ),

∴∠A2221( 等量代換),

2(2﹣∠1)(提取公因數(shù)),

2E(等量代換)

(2)(1)可知:∠A2E

∵∠A=∠ABC,∠ABC2ABE,

2E2ABE,

即∠E=∠ABE,

ABCE

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形的頂點、分別在軸的正半軸上,點邊上的點, ,反比例函數(shù)在第一象限內(nèi)的圖象經(jīng)過點邊上的點.

(1)、的值和反比例函數(shù)的表達式.

(2)將矩形的一角折疊,使點與點重合,折痕分別與軸, 軸正半軸交于點,求線段的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點A在平面直角坐標系中第一象限內(nèi),將線段AO平移至線段BC,其中點A與點B對應.

1)如圖(1),若,連接AB,AC,在坐標軸上存在一點D,使得,求點D的坐標;

2)如圖(2),若,點Py軸上一動點(點P不與原點重合),請直接寫出之間的數(shù)量關(guān)系(不用證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一元二次方程:Max2+bx+c=0Ncx2+bx+a=0,其中ac≠0,a≠c,以下四個結(jié)論:

①如果方程M有兩個不相等的實數(shù)根,那么方程N也有兩個不相等的實數(shù)根;

②如果方程M有兩根符號相同,那么方程N的兩根符號也相同;

③如果m是方程M的一個根,那么是方程N的一個根;

④如果方程M和方程N有一個相同的根,那么這個根必是x=1

正確的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下面的幾個算式:

12142×21232193×3;

1234321164×4。

根據(jù)上面幾道題的規(guī)律,計算下面的題:

12345678987654321的值為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD是正方形,E、F分別是DCCB的延長線上的點,且DE=BF,連接AE、AFEF

1)求證:ADE≌△ABF

2)填空:ABF可以由ADE繞旋轉(zhuǎn)中心   點,按順時針方向旋轉(zhuǎn)   度得到.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】全球氣候變暖導致-些冰川融化并消失,在冰川|消失12年后,一種低等植物苔蘚,就開始在巖石上生長,每一個苔蘚都會長成近似的圓形,苔蘚的直徑和其生長年限近似地滿足如下的關(guān)系式:d=7 (t≥12),其中d表示苔蘚的直徑,單位是厘米,t代表冰川消失的時間(單位:年)。

(1)計算冰川消失16年后苔蘚的直徑為多少厘米?

(2)如果測得一些苔蘚的直徑是35厘米,問冰川約是在多少年前消失的?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】大于1的正整數(shù)m的三次冪可分裂成若干個連續(xù)奇數(shù)的和,如23=3+5,33=7+9+11,43=13+15+17+19,m3分裂后,其中有一個奇數(shù)是2015,則m的值是(

A.43B.44C.45D.46

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù)y =-x+7與正比例函數(shù)y=x的圖象交于點A,且與x軸交于點B

1求點A和點B的坐標;

2過點AACy軸于點C,過點B作直線ly點P從點O出發(fā),以每秒1個單位的速度,沿OCA的路線向點A運動;同時直線l從點B出發(fā),以相同速度向左平移,在平移過程中,直線l交x軸于點R,交BA或線段AO于點Q當點P到達點A時,點P和直線l停止運動在運動過程中,設動點P運動的時間為t

當t為何值時,以A、P、R為頂點的三角形的面積為8?

是否存在A、P、Q為頂點的三角形是直角三角形?若存在,求t的值;若不存在,請說明理由

查看答案和解析>>

同步練習冊答案