如圖,已知直線AB∥CD,∠C=125°,∠A=45°,那么∠E的大小為


  1. A.
    70°
  2. B.
    80°
  3. C.
    90°
  4. D.
    100°
B
分析:根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ),求得∠EFA=55°,再利用三角形內(nèi)角和定理即可求得∠E的度數(shù).
解答:解:∵AB∥CD,∠C=125°,
∴∠EFB=125°,
∴∠EFA=180-125=55°,
∵∠A=45°,
∴∠E=180°-∠A-∠EFA=180°-45°-55°=80°.
故選B.
點(diǎn)評:本題應(yīng)用的知識點(diǎn)為:兩直線平行,同旁內(nèi)角互補(bǔ);三角形內(nèi)角和定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

13、如圖,已知直線AB,CD相交于點(diǎn)O,OA平分∠EOC,∠EOC=70°,則∠BOD的度數(shù)等于
35
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖,已知直線AB、CD相交于點(diǎn)O,OE平分∠BOC,如果∠BOE=50°,那么∠AOC=
80
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直線AB和CD相交于O點(diǎn),∠DOE是直角,OF平分∠AOE,∠BOD=22°,求∠COF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直線AB∥CD,∠A=∠C=100°,E、F在CD上,且滿足∠DBF=∠ABD,BE平分∠CBF.
(1)直線AD與BC有何位置關(guān)系?請說明理由.
(2)求∠DBE的度數(shù).
(3)若平行移動AD,在平行移動AD的過程中,是否存在某種情況,使∠BEC=∠ADB?若存在,求出其度數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直線AB∥CD,EM⊥FM,∠MFD=25°,求∠MEB的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案