【題目】為提高學(xué)生身體素質(zhì),某校決定開展足球、籃球、排球、兵乓球等四項課外體育活動,要求全員參與,并且每名學(xué)生只能選擇其中一項.為了解選擇各種體育活動項目的學(xué)生人數(shù),該校隨機抽取了部分學(xué)生進行調(diào)查,并繪制出如下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答下列問題:
(1)直接寫出這次抽樣調(diào)查的學(xué)生人數(shù);
(2)補全條形統(tǒng)計圖;
(3)若該學(xué)??cè)藬?shù)是1500人,請估計選擇籃球項目的學(xué)生約有多少人?
【答案】(1)400;(2)見解析;(3)600人
【解析】
(1)由“足球”人數(shù)及百分比可得總?cè)藬?shù);
(2)根據(jù)各項目人數(shù)之和等于總?cè)藬?shù)求出“籃球”的人數(shù),補全條形圖即可;
(3)用總?cè)藬?shù)乘以樣本中足球所占的百分比即可解答.
(1)由圖中數(shù)據(jù)得:總?cè)藬?shù)是140÷35%=400(人);
(2)選擇“籃球”人數(shù)為:400-140-20-80=160(人),補全條形統(tǒng)計圖如圖所示;
(3)
∴(人)
∴選擇籃球項目的學(xué)生人數(shù)大約有600人.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年我市將創(chuàng)建全國森林城市,提出了“共建綠色城”的倡議.某校積極響應(yīng),在3月12日植樹節(jié)這天組織全校學(xué)生開展了植樹活動,校團委對全校各班的植樹情況道行了統(tǒng)計,繪制了如圖所示的兩個不完整的統(tǒng)計圖.
(1)求該校的班級總數(shù);
(2)將條形統(tǒng)計圖補充完整;
(3)求該校各班在這一活動中植樹的平均數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,點O是邊AC的中點,分別過點A、C作射線BO的垂線,E、F是垂足.
(1)如圖1,求證:四邊形AECF是平行四邊形;
(2)如圖2,若,,,求線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】南岸區(qū)近年修建和完善了不少道路,其中一段道路兩側(cè)的綠化任務(wù)計劃由甲、乙、丙、丁四個人完成.道路兩側(cè)的植樹數(shù)量相同,如果乙、丙、丁同時開始植樹,丁在道路左側(cè),乙和丙在道路右側(cè),2小時后,甲加入,在道路左側(cè)與丁一起植樹.這樣恰好能保證道路兩側(cè)的植樹任務(wù)同時完成.已知甲、乙、丙、丁每小時能完成的植樹數(shù)量分別為6、7、8、10棵.實際在植樹時,四人一起開始植樹,甲和丁在道路左側(cè)、乙和丙在道路右側(cè),為保證右側(cè)比左側(cè)提前5小時完成植樹任務(wù),甲中途轉(zhuǎn)到右側(cè)與乙和丙一起按要求完成了任務(wù),左側(cè)剩下的任務(wù)由丁獨自完成、則在本次植樹任務(wù)中,甲比丁少植樹_____棵.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系內(nèi),拋物線與x軸交于點A,C(點A在點C的左側(cè)),與y軸交于點B,頂點為D.點Q為線段BC的三等分點(靠近點C).
(1)點M為拋物線對稱軸上一點,點E為對稱軸右側(cè)拋物線上的點且位于第一象限,當(dāng)的周長最小時,求面積的最大值;
(2)在(1)的條件下,當(dāng)的面積最大時,過點E作軸,垂足為N,將線段CN繞點C順時針旋轉(zhuǎn)90°得到點N,再將點N向上平移個單位長度.得到點P,點G在拋物線的對稱軸上,請問在平面直角坐標(biāo)系內(nèi)是否存在一點H,使點D,P,G,H構(gòu)成菱形.若存在,請直接寫出點H的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的一邊AB為直徑作⊙O,交于BC的中點D,過點D作直線EF與⊙O相切,交AC于點E,交AB的延長線于點F.若△ABC的面積為△CDE的面積的8倍,則下列結(jié)論中,錯誤的是( )
A.AC=2AOB.EF=2AEC.AB=2BFD.DF=2DE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣2(k﹣1)x+2.
(1)當(dāng)k=3時,求函數(shù)圖象與x軸的交點坐標(biāo);
(2)函數(shù)圖象的對稱軸與原點的距離為2,當(dāng)﹣1≤x≤5時,求此時函數(shù)的最小值;
(3)函數(shù)圖象交y軸于點B,交直線x=4于點C,設(shè)二次函數(shù)圖象上的一點P(x,y)滿足0≤x≤4時,y≤2,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k≠0)與反比例函數(shù)y=(m≠0)的圖象交于第二、四象限A、B兩點,過點A作AD⊥x軸于D,AD=4,sin∠AOD=,且點B的坐標(biāo)為(n,-2).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)E是y軸上一點,且△AOE是等腰三角形,請直接寫出所有符合條件的E點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的布袋中裝有標(biāo)著數(shù)字2,3,4,5的4個小球,這4個小球的材質(zhì)、大小和形狀完全相同,現(xiàn)從中隨機摸出兩個小球,這兩個小球上的數(shù)字之積大于9的概率為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com