如圖,已知在四邊形ABCD中,∠BAD=∠BCD=900,BC=CD,E是AD延長線上一點,若DE=AB=3cm,CE=cm。

⑴試證明△ABC≌△EDC;
⑵試求出線段AD的長。
⑴見解析⑵5cm解析:
⑴解:連接AC,
∵BC=CD,AB=DE,
∠B+∠ADC=180°,∠ADC+∠CDE=180°,
∴∠B=∠CDE,
∴△CDE≌△CBA(SAS),
⑵∴△CDE≌△CBA
∴∠ACE=90°.
因為CA="CE=4" 2 cm,所以AE=8cm,故AD=5cm
可連接AC,得出△CDE≌△CBA(SAS),即∠ACE=90°,再利用勾股定理求解即可
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知在四邊形ABCD中,AD=AB,CD=CB,則∠D=∠B,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知在四邊形ABCD中,∠C=90°,AB=AD=10,cos∠ABD=
25
,∠BDC=60°.求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知在四邊形ABCD中,AC與BD相交于點O,AB⊥AC,CD⊥BD.
(1)求證:△AOD∽△BOC;
(2)若sin∠ABO=
23
,S△AOD=4,求S△BOC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•奉賢區(qū)一模)如圖,已知在四邊形ABCD中,AC⊥AB,BD⊥CD,AC與BD相交于點E,S△AED=9,S△BEC=25.
(1)求證:∠DAC=∠CBD;
(2)求cos∠AEB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在四邊形ABCD中,∠ABC=2∠ADC=2a,點E、F分別在CB、CD的延長線上,且EB=AB+AD,∠AEB=∠FAD,猜想線段AE、AF的數(shù)量關(guān)系,并證明你的猜想.

查看答案和解析>>

同步練習(xí)冊答案