【題目】(1)″________;(2)_______°________________″;
(3)″________.
【答案】
【解析】
(1)根據小單位化大單位除以進率,可得答案;
(2)根據大單位化小單位乘以進率,不滿1度的化成分,不滿一分的化成秒,可得答案;
(3)根據小單位化大單位除以進率,可得答案.
(1)65°25′12″=65°25′+12÷60
=65°25′+0.2′
=65°+25.2÷60
=65.42°;
(2)25.72°=25°+0.72×60
=25°+43.2′
=25°43′+0.2×60
=25°43′+12'
=25°43′12';
(3)45°13′30″=45°13′+30÷60
=45°13′+0.5′
=45°+13.5÷60
=45.22°.
故答案為:(1)65.42°;(2)25,43,12;(3)45.22.
科目:初中數學 來源: 題型:
【題目】已知,如圖,二次函數y=ax2+2ax﹣3a(a≠0)圖象的頂點為H,與x軸交于A、B兩點(B在A點右側),點H、B關于直線l: 對稱.
(1)求A、B兩點坐標,并證明點A在直線l上;
(2)求二次函數解析式;
(3)過點B作直線BK∥AH交直線l于K點,M、N分別為直線AH和直線l上的兩個動點,連接HN、NM、MK,求HN+NM+MK和的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,AD=,把邊BC繞點B逆時針旋轉30°得到線段BP,連接AP并延長交CD于點E,連接PC,則三角形PCE的面積為____________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖:CD是⊙O的直徑,線段AB過圓心O,且OA=OB= ,CD=2,連接AC、AD、BD、BC、AD、CB分別交⊙O于E、F.
(1)問四邊形CEDF是何種特殊四邊形?請證明你的結論;
(2)當AC與⊙O相切時,四邊形CEDF是正方形嗎?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線l1經過點E(1,0)和F(5,0),并交y軸于D(0,﹣5);拋物線l2:y=ax2﹣(2a+2)x+3(a≠0),
(1)試求拋物線l1的函數解析式;
(2)求證:拋物線 l2與x軸一定有兩個不同的交點;
(3)若a=1,拋物線l1、l2頂點分別為、;當x的取值范圍是時,拋物線l1、l2 上的點的縱坐標同時隨橫坐標增大而增大;
(4)若a=1,已知直線MN分別與x軸、l1、l2分別交于點P(m,0)、M、N,且MN∥y軸,當1≤m≤5時,求線段MN的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,∠C=30°,AC=48,點D從點C出發(fā)沿CA方向以每秒4個單位長的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以每秒2個單位長的速度向點B勻速運動,當其中一個點到達終點,另一個點也隨之停止運動,設點D、E運動的時間是t秒(t>0),過點D作DF⊥BC于點F,連接DE、EF.
(1)求證:AE=DF;
(2)當四邊形BFDE是矩形時,求t的值;
(3)四邊形AEFD能夠成為菱形嗎?如果能,求出相應的t值;如果不能,說明理由.×
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(2017遼寧省盤錦市,第18題,3分)如圖,點A1(1,1)在直線y=x上,過點A1分別作y軸、x軸的平行線交直線于點B1,B2,過點B2作y軸的平行線交直線y=x于點A2,過點A2作x軸的平行線交直線于點B3,…,按照此規(guī)律進行下去,則點An的橫坐標為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2﹣(2a+1)x+b的圖象經過(2,﹣1)和(﹣2,7)且與直線y=kx﹣2k﹣3相交于點P(m,2m﹣7).
(1)求拋物線的解析式;
(2)求直線y=kx﹣2k﹣3與拋物線y=ax2﹣(2a+1)x+b的對稱軸的交點Q的坐標;
(3)在y軸上是否存在點T,使△PQT的一邊中線等于該邊的一半?若存在,求出點T的坐標;若不存在請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com