【題目】如圖,在平行四邊形ABCD中,E為BC邊上的一點,且AE與DE分別平分∠BAD和∠ADC
(1)求證:AE⊥DE;
(2)設以AD為直徑的半圓交AB于F,連結DF交AE于G,已知CD=5,AE=8.
①求BC的長;
②求 值.
【答案】
(1)
證明:在平行四邊形ABCD中,∵AB∥CD,
∴∠BAD+∠ADC=180°.
又∵AE、DE平分∠BAD、∠ADC,
∴∠DAE+∠ADE=90°,
∴∠AED=90°,
∴AE⊥DE
(2)
解:①在平行四邊形ABCD中,∵AD∥BC,AB=CD=5,AD=BC,
∴∠DAE=∠BEA,
又∵AE平分∠BAD,即∠DAE=∠BAE,
∴∠BEA=∠BAE,
∴BE=AB=5,
同理EC=CD=5,
∴BC=BE+EC=10,
②∵AD=BC=10,AE=8,
在Rt△AED中,DE= = =6,
又∵AE是∠BAD的角平分線,
∴∠FAG=∠DAE,
∵AD是直徑,
∴∠AFD=90°,
∴tan∠FAG= ,
∴ =tan∠DAE= = = .
【解析】(1)由∠BAD+∠ADC=180°.又因為AE、DE平分∠BAD、∠ADC,推出∠DAE+∠ADE=90°,即可推出∠AED=90°,由此即可解決問題.(2)①只要證明BA=BW,CD=CE即可解決問題.②由tan∠FAG= ,可得 =tan∠DAE= ,求出DE即可解決問題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,E為AB中點,F(xiàn)E⊥AB,AF=2AE,F(xiàn)C交BD于O,則∠DOC的度數(shù)為( )
A.60°
B.67.5°
C.75°
D.54°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,正方形ABCD的邊長為4,E是邊BC上的一點,且BE=1,P是對角線AC上的一動點,連接PB、PE,當點P在AC上運動時,△PBE周長的最小值是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC內(nèi)有邊長分別為a,b,c的三個正方形,則a,b,c滿足的關系式是( )
A.b=a+c
B.b=ac
C.b2=a2+c2
D.b=2a=2c
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,雙曲線y= (x>0)與直線EF交于點A,點B,且AE=AB=BF,連結AO,BO,它們分別與雙曲線y= (x>0)交于點C,點D,則:
(1)①AB與CD的位置關系是;
②四邊形ABDC的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先化簡,再求代數(shù)式的值:( ﹣ )÷ ,其中sin230°<a<tan260°,請你取一個合適的整數(shù)作為a的值代入求值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點B,E,C,F(xiàn)在一條直線上,AB=DF,AC=DE,∠A=∠D.
(1)求證:AC∥DE;
(2)若BF=13,EC=5,求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=﹣3x+3與x軸、y軸分別交于A、B兩點,以AB為邊在第一象限作正方形ABCD,點D在雙曲線 (k≠0)上.將正方形沿x軸負方向平移a個單位長度后,點C恰好落在該雙曲線上,則a的值是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=4﹣x與兩坐標軸分別相交于A、B點,點M是線段AB上任意一點(A、B兩點除外),過M分別作MC⊥OA于點C,MD⊥OB于點D.
(1)當點M在AB上運動時,則四邊形OCMD的周長= .
(2)當四邊形OCMD為正方形時,將正方形OCMD沿著x軸的正方向移動,設平移的距離為a(0<a≤4),在平移過程中,當平移距離a為多少時,正方形OCMD的面積被直線AB分成1:3兩個部分?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com