精英家教網 > 初中數學 > 題目詳情

閱讀下面材料:
問題:如圖①,在△ABC中, DBC邊上的一點,若∠BAD=∠C=2∠DAC=45°,DC=2.求BD的長.
小明同學的解題思路是:利用軸對稱,把△ADC進行翻折,再經過推理、計算使問題得到解決.
(1)請你回答:圖中BD的長為   ;
(2)參考小明的思路,探究并解答問題:如圖②,在△ABC中,DBC邊上的一點,若∠BAD=∠C=2∠DAC=30°,DC=2,求BDAB的長.
            
圖①                                   圖②

(2)BD=2;

解析試題分析:解:(1)折疊△ADC得△ACE。則AD=AE
則可證∠DAE=2∠DAC=45°=∠BAD,又因為在△ABC中,可證∠B=∠ADB=67.5°。所以AB=AD。
則證出△ABD≌△AED(SAS),所以可得BD=DE。且∠ADB=∠ADE=67.5°。所以∠EDC=180°-2∠ADB=45°。
所以Rt△DCE為等腰直角三角形。因為CD=2,通過勾股定理可求DE=
所以.           
(2)把△ADC沿AC翻折,得△AEC,連接DE,

∴△ADC≌△AEC.
∴∠DAC=∠EAC,∠DCA=∠ECA, DC=EC.
∵∠BAD=∠BCA=2∠DAC=30°,
∴∠BAD=∠DAE=30°,∠DCE=60°.
∴△CDE為等邊三角形.
∴DC=DE.
在AE上截取AF=AB,連接DF,
∴△ABD≌△AFD.
∴BD=DF.
在△ABD中,∠ADB=∠DAC+∠DCA=45°,
∴∠ADE=∠AED =75°,∠ABD =105°.
∴∠AFD =105°.
∴∠DFE=75°.
∴∠DFE=∠DEF.
∴DF=DE.  
∴BD=DC=2. 
作BG⊥AD于點G,
∴在Rt△BDG中,.  
∴在Rt△ABG中,.                                  
考點:全等三角形
點評:本題難度較大,主要考查學生對全等三角形判定與性質等掌握。本題中帶有提示可節(jié)省時間直接找出解題線索,審題是要抓住提示關鍵。

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:閱讀理解

(2012•朝陽區(qū)一模)閱讀下面材料:
問題:如圖①,在△ABC中,D是BC邊上的一點,若∠BAD=∠C=2∠DAC=45°,DC=2.求BD的長.

小明同學的解題思路是:利用軸對稱,把△ADC進行翻折,再經過推理、計算使問題得到解決.
(1)請你回答:圖中BD的長為
2
2
2
2
;
(2)參考小明的思路,探究并解答問題:如圖②,在△ABC中,D是BC邊上的一點,若∠BAD=∠C=2∠DAC=30°,DC=2,求BD和AB的長.

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

閱讀下面材料:
問題:如圖①,在△ABC中, DBC邊上的一點,若∠BAD=∠C=2∠DAC=45°,DC=2.求BD的長.
小明同學的解題思路是:利用軸對稱,把△ADC進行翻折,再經過推理、計算使問題
得到解決.
(1)請你回答:圖中BD的長為   ;
(2)參考小明的思路,探究并解答問題:如圖②,在△ABC中,DBC邊上的一點,若∠BAD=∠C=2∠DAC=30°,DC=2,求BDAB的長.
                                                                                  

查看答案和解析>>

科目:初中數學 來源:2011-2012學年北京市朝陽區(qū)中考一模數學卷(帶解析) 題型:解答題

閱讀下面材料:
問題:如圖①,在△ABC中, DBC邊上的一點,若∠BAD=∠C=2∠DAC=45°,DC=2.求BD的長.
小明同學的解題思路是:利用軸對稱,把△ADC進行翻折,再經過推理、計算使問題
得到解決.
(1)請你回答:圖中BD的長為   ;
(2)參考小明的思路,探究并解答問題:如圖②,在△ABC中,DBC邊上的一點,若∠BAD=∠C=2∠DAC=30°,DC=2,求BDAB的長.
                                                                                  

查看答案和解析>>

科目:初中數學 來源:2012-2013學年北京市龍文教育九年級第一次中考模擬數學試卷(解析版) 題型:解答題

閱讀下面材料:

問題:如圖①,在△ABC中, DBC邊上的一點,若∠BAD=∠C=2∠DAC=45°,DC=2.求BD的長.

小明同學的解題思路是:利用軸對稱,把△ADC進行翻折,再經過推理、計算使問題得到解決.

(1)請你回答:圖中BD的長為   ;

(2)參考小明的思路,探究并解答問題:如圖②,在△ABC中,DBC邊上的一點,若∠BAD=∠C=2∠DAC=30°,DC=2,求BDAB的長.

            

圖①                                   圖②

 

查看答案和解析>>

同步練習冊答案