在△ABC中,AB=AC,D為BC上一點(diǎn),由D分別作DE⊥AB于E,DF⊥AC于F.設(shè)DE=a,DF=b,且實(shí)數(shù)a,b滿足9a2-24ab+16b2=0,并有2a2b=2566,∠A使得方程數(shù)學(xué)公式x2-x•sinA+數(shù)學(xué)公式sinA-數(shù)學(xué)公式=0有兩個(gè)相等的實(shí)數(shù)根.
(1)試求實(shí)數(shù)a,b的值;
(2)試求線段BC的長(zhǎng).

解:(1)由條件有,解得;
(2)又由關(guān)于x的方程的判別式△=sin2A-sinA+=(sinA-2=0,則sinA=,而∠A為三角形的一個(gè)內(nèi)角,所以∠A1=60°或∠A2=120°  
當(dāng)∠A=60°時(shí),△ABC為正三角形,∠B=∠C=60°
于是分別在Rt△BDE和Rt△CDF中
有BD=,CD=
所以BC=BD+DC=

當(dāng)∠A=120°時(shí),△ABC為等腰三角形,∠B=∠C=30°
同上方法可得BC=14.    

所以線段BC的長(zhǎng)應(yīng)為或14.
分析:(1)由題意可知:2a2b=2566,則2a2b=248,則a2b=48.化簡(jiǎn)9a2-24ab+16b2=0得:(3a-4b)2=0,
則3a-4b=0,即3a=4b,則根據(jù),可求得a與b的值;
(2)要求BC的長(zhǎng)需求出BD和CD的長(zhǎng),知BD、CD分別是直角三角形BDE和直角三角形CDF中的斜邊.
又知在△ABC中,AB=AC,則∠B=∠C,則根據(jù)三角函數(shù)只要知道∠B或∠C的讀數(shù)即可,要求∠B或∠C的讀數(shù)
需求的∠A的讀數(shù),根據(jù)判別式可以求得∠A的讀數(shù).
點(diǎn)評(píng):考查了解直角三角形以及判別式的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•寧德質(zhì)檢)如圖,在△ABC中,AB=AC=6,點(diǎn)0為AC的中點(diǎn),OE⊥AB于點(diǎn)E,OE=
32
,以點(diǎn)0為圓心,OA為半徑的圓交AB于點(diǎn)F.
(1)求AF的長(zhǎng);
(2)連結(jié)FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•襄陽(yáng))如圖,在△ABC中,AB=AC,AD⊥BC于點(diǎn)D,將△ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn),使AC與AB重合,點(diǎn)D落在點(diǎn)E處,AE的延長(zhǎng)線交CB的延長(zhǎng)線于點(diǎn)M,EB的延長(zhǎng)線交AD的延長(zhǎng)線于點(diǎn)N.
求證:AM=AN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,AB=AC,把△ABC繞著點(diǎn)A旋轉(zhuǎn)至△AB1C1的位置,AB1交BC于點(diǎn)D,B1C1交AC于點(diǎn)E.求證:AD=AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•濱湖區(qū)一模)如圖,在△ABC中,AB是⊙O的直徑,∠B=60°,∠C=70°,則∠BOD的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•吉林)如圖,在△ABC中,AB=AC,D為邊BC上一點(diǎn),以AB,BD為鄰邊作?ABDE,連接AD,EC.
(1)求證:△ADC≌△ECD;
(2)若BD=CD,求證:四邊形ADCE是矩形.

查看答案和解析>>

同步練習(xí)冊(cè)答案