如圖1,已知梯形OABC,拋物線分別過點(diǎn)O(0,0)、A(2,0)、B(6,3).
(1)直接寫出拋物線的對(duì)稱軸、解析式及頂點(diǎn)M的坐標(biāo);
(2)將圖1中梯形OABC的上下底邊所在的直線OA、CB以相同的速度同時(shí)向上平移,分別交拋物線于點(diǎn)O1、A1、C1、B1,得到如圖2的梯形O1A1B1C1.設(shè)梯形O1A1B1C1的面積為S,A1、 B1的坐標(biāo)分別為 (x1,y1)、(x2,y2).用含S的代數(shù)式表示x2-x1,并求出當(dāng)S=36時(shí)點(diǎn)A1的坐標(biāo);
(3)在圖1中,設(shè)點(diǎn)D的坐標(biāo)為(1,3),動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿著線段BC運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)D出發(fā),以與點(diǎn)P相同的速度沿著線段DM運(yùn)動(dòng).P、Q兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)Q到達(dá)點(diǎn)M時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)P、Q兩點(diǎn)的運(yùn)動(dòng)時(shí)間為t,是否存在某一時(shí)刻t,使得直線PQ、直線AB、x軸圍成的三角形與直線PQ、直線AB、拋物線的對(duì)稱軸圍成的三角形相似?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說明理由.
  
(1)對(duì)稱軸:直線x=1,解析式:y=x2-x,頂點(diǎn)坐標(biāo):M(1,-).(2) A1(6,3).(3) t=.

試題分析:(1)已知了O、A、B的坐標(biāo),可用待定系數(shù)法求出拋物線的解析式,進(jìn)而可得到其對(duì)稱軸方程和頂點(diǎn)M的坐標(biāo).
(2)在兩條直線平移的過程中,梯形的上下底發(fā)生了改變,但是梯形的高沒有變化,仍為3,即y2-y1=3,可根據(jù)拋物線的解析式,用x1、x2表示出y1、y2,然后聯(lián)立y2-y1=3,可得到第一個(gè)關(guān)于x1、x2的關(guān)系式①;在兩條直線平移過程中,拋物線的對(duì)稱軸沒有變化,可用x1、x2以及拋物線的對(duì)稱軸解析式表示出梯形上下底的長(zhǎng),進(jìn)而可得到梯形面積的表達(dá)式,這樣可得到另外一個(gè)x1、x2的關(guān)系式②,聯(lián)立兩個(gè)關(guān)系式,即可得到關(guān)于(x2-x1)與S的關(guān)系式③,將S=36代入②③的關(guān)系式中,即可列方程組求得x1、x2的值,進(jìn)而可求出A點(diǎn)的坐標(biāo).
(3)要解答此題,首先要弄清幾個(gè)關(guān)鍵點(diǎn):
一、當(dāng)PQ∥AB時(shí),設(shè)直線AB與拋物線對(duì)稱軸的交點(diǎn)為E,可得△DPQ∽△DBE,可用t表示出DP、DQ的長(zhǎng),而E點(diǎn)坐標(biāo)易求得,根據(jù)相似三角形所得比例線段,即可得到此時(shí)t的值即t=;
二、當(dāng)P、Q都停止運(yùn)動(dòng)時(shí),顯然BC>DM,所以此時(shí)t=DM÷1=3;可分兩種情況討論:
①當(dāng)0<t<時(shí),設(shè)直線PQ與直線AB的交點(diǎn)為F,與x軸的交點(diǎn)為G;由題意知△FQE∽△FAG,得∠FGA=∠FEQ,由于BC∥x軸,則∠DPQ=∠FGA=∠FEQ,由此可證得△DPQ∽△DEB,DB、DE的長(zhǎng)已求得,可用t表示出DP、DQ的長(zhǎng),根據(jù)相似三角形所得比例線段,即可求得此時(shí)t的值;
②當(dāng)<t<3 時(shí),方法同①;
在求得t的值后,還要根據(jù)各自的取值范圍將不合題意的解舍去.
試題解析::(1)對(duì)稱軸:直線x=1,
解析式:y=x2-x,
頂點(diǎn)坐標(biāo):M(1,-).
(2)由題意得y2-y1=3,y2-y1=x22-x2-x12+x1=3,
得:(x2-x1)[(x2+x1)-]=3①,
s==3(x1+x2)-6,
得:x1+x2=+2②,
把②代入①并整理得:x2-x1=(S>0),
當(dāng)s=36時(shí),,
解得:,
把x1=6代入拋物線解析式得y1=3,
∴點(diǎn)A1(6,3).
(3)存在
易知直線AB的解析式為y=x-,可得直線AB與對(duì)稱軸的交點(diǎn)E的坐標(biāo)為(1,-),
∴BD=5,DE=,DP=5-t,DQ=t,
當(dāng)PQ∥AB時(shí),,即,
得t=
下面分兩種情況討論:設(shè)直線PQ與直線AB、x軸的交點(diǎn)分別為點(diǎn)F、G;
當(dāng)0<t<時(shí),如圖1-1;
∵△FQE∽△FAG,∴∠FGA=∠FEQ,
∴∠DPQ=∠DEB;易得△DPQ∽△DEB,
,
,
得t=
∴t=(舍去);
當(dāng)<t<3時(shí),如圖1-2;
∵△FQE∽△FAG,
∴∠FAG=∠FQE,
∵∠DQP=∠FQE,∠FAG=∠EBD,
∴∠DQP=∠DBE,易得△DPQ∽△DEB,

,
∴t=
∴當(dāng)t=秒時(shí),使直線PQ、直線AB、x軸圍成的三角形與直線PQ、直線AB、拋物線的對(duì)稱軸圍成的三角形相似.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

一射擊運(yùn)動(dòng)員在一次比賽中將進(jìn)行10次射擊,已知前7次射擊共中62環(huán),如果他要打破90環(huán)(每次射擊以1到10環(huán)的整數(shù)環(huán)計(jì)算)的記錄,問第8次射擊不能少于( 。
A.7環(huán)B.8環(huán)C.9環(huán)D.10環(huán)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在等式3x-2y2=0,x2+y2=1,y=
x
,y=|x|,x=|y|,y是x的函數(shù)的有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

小明每天從家去學(xué)校上學(xué)行走的路程為900米,某天他從家去上學(xué)時(shí)以每分30米的速度行走了450米,為了不遲到,他加快了速度,以每分45米的速度行走完剩下的路程,那么小明行走過的路程S(米)與他行走的時(shí)間t(分)之間的函數(shù)關(guān)系用圖象表示正確的是   (   )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列函數(shù)中,自變量的取值范圍是x>3的是(    )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知等腰三角形ABC的底邊AB在x軸上,A點(diǎn)坐標(biāo)為(1,0)頂點(diǎn)C的縱坐標(biāo)為4,AC=,則B點(diǎn)的坐標(biāo)為             

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)中自變量的取值范圍是  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

日出日落,一天的氣溫隨時(shí)間的變化而變化,在這一問題中,自變量是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)中,自變量的取值范圍是__________.

查看答案和解析>>

同步練習(xí)冊(cè)答案