完成下面推理過程:
如圖,已知∠1 =∠2,∠B =∠C,可推得AB∥CD.理由如下:
證明 :∵∠1 =∠2(已知),且∠1 =∠CGD(______________ _________),
∴∠2 =∠CGD(等量代換).
∴CE∥BF(___________________ ________).
∴∠ =∠C(__________________________).
又∵∠B =∠C(已知),
∴∠ =∠B( ).
∴AB∥CD(________________________________).
對頂角相等;同位角相等,兩直線平行;∠HFD;兩直線平行,同位角相等;∠HFD;等量代換;內錯角相等,兩直線平行
【解析】
試題分析:根據平行線的判定和性質依次分析即可得到結果.
∵∠1 =∠2(已知),且∠1 =∠CGD(對頂角相等),
∴∠2 =∠CGD(等量代換).
∴CE∥BF(同位角相等,兩直線平行).
∴∠HFD=∠C(兩直線平行,同位角相等).
又∵∠B =∠C(已知),
∴∠HFD=∠B(等量代換).
∴AB∥CD(內錯角相等,兩直線平行).
考點:平行線的判定和性質
點評:平行線的判定和性質是初中數學的重點,貫穿于整個初中數學的學習,是中考常見題,一般難度不大,需熟練掌握.
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源:2013學年度武漢市江漢區(qū)七年級下學期月考數學試卷(帶解析) 題型:解答題
完成下面推理過程:
如圖,已知∠1 =∠2,∠B =∠C,可推得AB∥CD.理由如下:
∵∠1 =∠2(已知),
且∠1 =∠CGD(______________ _________),
∴∠2 =∠CGD(等量代換).
∴CE∥BF(___________________ ________).
∴∠ =∠C(__________________________).
又∵∠B =∠C(已知),
∴∠ =∠B(等量代換).
∴AB∥CD(________________________________).
查看答案和解析>>
科目:初中數學 來源:2012-2013學年江西南康新世紀中英文學校初一下期中考試數學試卷(帶解析) 題型:解答題
完成下面推理過程:
如圖,已知∠1 =∠2,∠B =∠C,可推得AB∥CD.理由如下:
證明 :∵∠1 =∠2(已知),且∠1 =∠CGD(______________ _________),
∴∠2 =∠CGD(等量代換).
∴CE∥BF(___________________ ________).
∴∠ =∠C(__________________________).
又∵∠B =∠C(已知),
∴∠ =∠B( ).
∴AB∥CD(________________________________).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com