【題目】已知直線,直線與直線、分別相交于點(diǎn)、.
(1)如圖1,若,求,的度數(shù);
(2)若點(diǎn)是平面內(nèi)的一個(gè)動(dòng)點(diǎn),連接、,探索、、之間的數(shù)量關(guān)系;
①當(dāng)點(diǎn)在圖2的位置時(shí),請(qǐng)寫出、、之間的數(shù)量關(guān)系并證明;
②當(dāng)點(diǎn)在圖3的位置時(shí),請(qǐng)寫出、、之間的數(shù)量關(guān)系并證明;
③當(dāng)點(diǎn)在圖4的位置時(shí),請(qǐng)直接寫出、、之間的數(shù)量關(guān)系.
【答案】(1);(2)①,證明見解析;②,證明見解析;③或.
【解析】
(1)根據(jù)對(duì)頂角相等求∠2,根據(jù)兩直線平行,同位角相等求∠3;
(2)①過點(diǎn)P作MN∥AB,根據(jù)平行線的性質(zhì)得∠EPM=∠PEB,且有MN∥CD,所以∠MPF=∠PFD,然后利用等式性質(zhì)易得∠EPF=∠PEB+∠PFD.
②③的解題方法與①一樣,分別過點(diǎn)P作MN∥AB,然后利用平行線的性質(zhì)得到三個(gè)角之間的關(guān)系.
(1)解:∵,,
∴;
∵,
∴ .
(2)①.
過點(diǎn)作,則.
∵,,
∴,
∴,
∴,
即.
②,
過點(diǎn)作,則,
∵,,
∴,
∴,
∴.
即.
③或.寫對(duì)一種即可.
理由:如圖4,過點(diǎn)P作PM∥AB,
∵AB∥CD,MP∥AB,
∴MP∥CD,
∴∠PEB=∠MPE,∠PFD=∠MPF,
∵∠EPF+∠FPM=∠MPE,
∴∠EPF+∠PFD=∠PEB.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明利用課余時(shí)間回收廢品,將賣得的錢去購(gòu)買5本大小不同的兩種筆記本,要求共花錢不超過28元,且購(gòu)買的筆記本的總頁數(shù)不低于340頁,兩種筆記本的價(jià)格和頁數(shù)如下表.為了節(jié)約資金,小明應(yīng)選擇哪一種購(gòu)買方案?請(qǐng)說明理由.
大筆記本 | 小筆記本 | |
價(jià)格(元/本) | 6 | 5 |
頁數(shù)(頁/本) | 100 | 60 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知點(diǎn) A(a+b,2-a)與點(diǎn)B(a-5,b-2a)關(guān)于y軸對(duì)稱.
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)如果點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn)是C,在圖中標(biāo)出點(diǎn)A、B、C,并求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知 CD⊥AB,EF⊥AB,垂足分別為D,F,∠B+∠BDG=180°, 試說明∠BEF=∠CDG.將下面的解答過程補(bǔ)充完整,并填空(填寫理由依據(jù)或數(shù)學(xué)式, 將答案按序號(hào)填在答題卷的對(duì)應(yīng)位置內(nèi))
證明:∵CD⊥AB,EF⊥AB( ① )
∴∠BFE=∠BDC=90°( ② )
∴EF∥CD( ③ )
∴∠BEF= ④ ( ⑤ )
又∵∠B+∠BDG=180°( ⑥ )
∴BC∥DG( ⑦ )
∴∠CDG= ⑧ ( ⑨ )
∴∠CDG=∠BEF( ⑩ )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】林灣鄉(xiāng)修建一條灌溉水渠,如圖,水渠從A村沿北偏東65°方向到B村,從B村沿北偏西25°方向到C村水渠從C村沿什么方向修建,可以保持與AB的方向一致?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀探究:12=,12+22=,12+22+32=,…
(1)根據(jù)上述規(guī)律,求12+22+32+42+52的值;
(2)你能用一個(gè)含有n(n為正整數(shù))的算式表示這個(gè)規(guī)律嗎?請(qǐng)直接寫出這個(gè)算式(不計(jì)算);
(3)根據(jù)你發(fā)現(xiàn)的規(guī)律,計(jì)算下面算式的值:62+72+82+92+102+112+122+132+142+152.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=3,BC=4,將邊AC沿CE翻折,使點(diǎn)A落在AB上的點(diǎn)D處;再將邊BC沿CF翻折,使點(diǎn)B落在CD的延長(zhǎng)線上的點(diǎn)B′處,兩條折痕與斜邊AB分別交于點(diǎn)E,F(xiàn),則線段B′F的長(zhǎng)為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E為正方形ABCD的邊AB的延長(zhǎng)線上一點(diǎn),DE交AC于點(diǎn)F,交BC于點(diǎn)G,H為GE的中點(diǎn).
求證:FB⊥BH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017懷化,第10題,4分)如圖,A,B兩點(diǎn)在反比例函數(shù)的圖象上,C,D兩點(diǎn)在反比例函數(shù)的圖象上,AC⊥y軸于點(diǎn)E,BD⊥y軸于點(diǎn)F,AC=2,BD=1,EF=3,則的值是( 。
A. 6 B. 4 C. 3 D. 2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com