當(dāng)a=﹣2時,則代數(shù)式的值為 _____ 

 

【答案】

-8

【解析】

試題分析:根據(jù)單項式乘多項式法則展開,再合并同類項,把﹣2代入求出即可.

解:a=﹣2,

a﹣2(1﹣a)

=a﹣2+a

=3a﹣2

=3×(﹣2)﹣2

=﹣8.

故答案為:﹣8.

考點:代數(shù)式求值;單項式乘多項式.

點評:本題考查了單項式乘多項式法則和求代數(shù)式的值等知識點的應(yīng)用,主要看學(xué)生展開時是否漏乘和能否正確合并同類項.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

九年義務(wù)教育三年制初級中學(xué)教科書《代數(shù)》第三冊第52頁的例2是這樣的:“解方程x4-6x2+5=0”.這是一個一元四次方程,根據(jù)該方程的特點,它的解法通常是:設(shè)x2=y,那么x4=y2,于是原方程可變?yōu)閥2-6y+5=0…①,解這個方程得:y1=1,y2=5.當(dāng)y=1時,x2=1,∴x=±1;當(dāng)y=5時,x2=5,∴x=±
5
.所以原方程有四個根:x1=1,x2=-1,x3=
5
,x4=-
5

(1)在由原方程得到方程①的過程中,利用
法達到降次的目的,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想.
(2)解方程(x2-x)2-4(x2-x)-12=0時,若設(shè)y=x2-x,則原方程可化為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、同學(xué)們都做過《代數(shù)》課本第三冊第87頁第4題:某禮堂共有25排座位,第一排有20個座位,后面每一排都比前一排多1個座位,寫出每排的座位數(shù)m與這排的排數(shù)n的函數(shù)關(guān)系式并寫出自變量n的取值范圍.
答案是:每排的座位數(shù)m與這排的排數(shù)n的函數(shù)關(guān)系式是m=n+19;自變量n的取值范圍是1≤n≤25,且n是正整數(shù).
上題中,在其他條件不變的情況下,請?zhí)骄肯铝袉栴}:
(1)當(dāng)后面每一排都比前一排多2個座位時,則每排的座位數(shù)m與這排的排數(shù)n的函數(shù)關(guān)系式是
m=2n+18
(1≤n≤25,且n是整數(shù));
(2)當(dāng)后面每一排都比前一排多3個座位、4個座位時,則每排的座位數(shù)m與這排的排數(shù)n的函數(shù)關(guān)系式分別是
m=3n+17
,
m=4n+16
(1≤n≤25,且n是整數(shù));
(3)某禮堂共有p排座位,第一排有a個座位,后面每排都比前一排多b個座位,試寫出每排的座位數(shù)m與這排的排數(shù)n的函數(shù)關(guān)系式,并指出自變量n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在數(shù)學(xué)的學(xué)習(xí)中,我們要學(xué)會總結(jié),不斷地歸納,思考和運用,這樣才能提高我們解決問題的能力,下面這個問題大家一定似曾相識:
(1)比較大。
①2+1
 
2
2×1
;  ②3+
1
3
 
2
1
3
③8+8
 
2
8×8

通過上面三個計算,我們可以初步對任意的非負(fù)實數(shù)a,b做出猜想a+b
 
2
ab

(2)學(xué)習(xí)了《二次根式》后我們可以對此猜想進行代數(shù)證明,請欣賞:
對于任意非負(fù)實數(shù)a,b,∵(
a
-
b
)2≥0
,∴a-2
ab
+b≥0
,∴a+b≥2
ab
,只有當(dāng)a=b時,等號成立.
(3)學(xué)習(xí)《圓》后,我們可以對這個結(jié)論進行幾何驗證:
如圖,AB為半圓O的直徑,C為半圓上的任意一點,(與A、B不重合)過點C作CD⊥AB,垂足為D,AD=a,DB=b.
根據(jù)圖形證明:a+b≥2
ab
,并指出等號成立時的條件.
精英家教網(wǎng)
(4)驀然回首,我們發(fā)現(xiàn)在上學(xué)期的《梯形的中位線》一節(jié)遇到的一個問題,此時運用這個結(jié)論解決是那樣的簡單:
如圖有一個等腰梯形工件(厚度不計),其面積為1800cm2,現(xiàn)在要用細(xì)包裝帶如圖那樣包扎(四點為四邊中點),則至少需要包裝帶的長度為
 
cm.
(注意:包扎時背面也有帶子,打結(jié)處長度忽略不計)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

九年義務(wù)教育三年制初級中學(xué)教科書《代數(shù)》第三冊第52頁的例2是這樣的:“解方程x4-6x2+5=0”.這是一個一元四次方程,根據(jù)該方程的特點,它的解法通常是:設(shè)x2=y,那么x4=y2,于是原方程可變?yōu)閥2-6y+5=0…①,解這個方程得:y1=1,y2=5.當(dāng)y=1時,x2=1,∴x=±1;當(dāng)y=5時,x2=5,∴數(shù)學(xué)公式.所以原方程有四個根:x1=1,x2=-1,x3=數(shù)學(xué)公式,x4=-數(shù)學(xué)公式
(1)在由原方程得到方程①的過程中,利用______法達到降次的目的,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想.
(2)解方程(x2-x)2-4(x2-x)-12=0時,若設(shè)y=x2-x,則原方程可化為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《一元二次方程》(04)(解析版) 題型:填空題

(2003•青島)九年義務(wù)教育三年制初級中學(xué)教科書《代數(shù)》第三冊第52頁的例2是這樣的:“解方程x4-6x2+5=0”.這是一個一元四次方程,根據(jù)該方程的特點,它的解法通常是:設(shè)x2=y,那么x4=y2,于是原方程可變?yōu)閥2-6y+5=0…①,解這個方程得:y1=1,y2=5.當(dāng)y=1時,x2=1,∴x=±1;當(dāng)y=5時,x2=5,∴.所以原方程有四個根:x1=1,x2=-1,x3=,x4=-
(1)在由原方程得到方程①的過程中,利用    法達到降次的目的,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想.
(2)解方程(x2-x)2-4(x2-x)-12=0時,若設(shè)y=x2-x,則原方程可化為   

查看答案和解析>>

同步練習(xí)冊答案