已知:如圖,AB是半圓O的直徑,D是AB延長線上的一點,AE⊥DC,交DC的延長線于點E,交半圓O于點F,且C為
BF
的中點.
(1)求證:DE是半圓O的切線;
(2)請說明∠EAC=∠BCD的理由.
分析:(1)連接BF,OC,根據(jù)C是
BF
的中點可以得到OC⊥BF,根據(jù)直徑所對的圓周角是直角可以得到BF⊥AE,則BF∥CE,因而可以證得OC⊥DE,從而證得DE是半圓O的切線;
(2)根據(jù)AB是半圓O的直徑,∠ACB=90°,則∠ACE+∠BCD=90°,在直角△ACE中,∠ACE+∠EAC=90°,即可得到∠EAC=∠BCD.
解答:證明:(1)連接BF,OC.
∵C為
BF
的中點,
∴OC⊥BF,
又∵AB是半圓O的直徑,
∴BF⊥AE,
∴BF∥CE,
∴OC⊥DE,
∴DE是半圓O的切線;

(2)∵AB是半圓O的直徑,
∴∠ACB=90°,
∴∠ACE+∠BCD=90°,
又∵直角△ACE中,∠ACE+∠EAC=90°,
∴∠EAC=∠BCD.
點評:本題考查了圓周角定理,以及切線的判定,判定切線的問題常用的方法是轉(zhuǎn)化成證明垂直問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,AB為⊙O的直徑,C、D是半圓弧上的兩點,E是AB上除O外的一點,AC與DE相交于F.①
AD
=
CD
,②DE⊥AB,③AF=DF.
(1)寫出“以①②③中的任意兩個為條件,推出第三個(結(jié)論)”的一個正確命題,并加以證明;
(2)“以①②③中的任意兩個為條件,推出笫三個(結(jié)論)”可以組成多少個正確的命題?(不必說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•沈陽)已知,如圖,在平面直角坐標(biāo)系中,點A坐標(biāo)為(-2,0),點B坐標(biāo)為(0,2),點E為線段AB上的動點(點E不與點A,B重合),以E為頂點作∠OET=45°,射線ET交線段0B于點F,C為y軸正半軸上一點,且OC=AB,拋物線y=-
2
x2+mx+n的圖象經(jīng)過A,C兩點.
(1)求此拋物線的函數(shù)表達(dá)式;
(2)求證:∠BEF=∠AOE;
(3)當(dāng)△EOF為等腰三角形時,求此時點E的坐標(biāo);
(4)在(3)的條件下,當(dāng)直線EF交x軸于點D,P為(1)中拋物線上一動點,直線PE交x軸于點G,在直線EF上方的拋物線上是否存在一點P,使得△EPF的面積是△EDG面積的(2
2
+1)倍?若存在,請直接寫出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009-2010學(xué)年吉林省長春市外國語學(xué)校九年級(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知:如圖,AB為⊙O的直徑,C、D是半圓弧上的兩點,E是AB上除O外的一點,AC與DE相交于F.①,②DE⊥AB,③AF=DF.
(1)寫出“以①②③中的任意兩個為條件,推出第三個(結(jié)論)”的一個正確命題,并加以證明;
(2)“以①②③中的任意兩個為條件,推出笫三個(結(jié)論)”可以組成多少個正確的命題?(不必說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《圓》(09)(解析版) 題型:解答題

(2003•綿陽)已知:如圖,AB為⊙O的直徑,C、D是半圓弧上的兩點,E是AB上除O外的一點,AC與DE相交于F.①,②DE⊥AB,③AF=DF.
(1)寫出“以①②③中的任意兩個為條件,推出第三個(結(jié)論)”的一個正確命題,并加以證明;
(2)“以①②③中的任意兩個為條件,推出笫三個(結(jié)論)”可以組成多少個正確的命題?(不必說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年四川省綿陽市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•綿陽)已知:如圖,AB為⊙O的直徑,C、D是半圓弧上的兩點,E是AB上除O外的一點,AC與DE相交于F.①,②DE⊥AB,③AF=DF.
(1)寫出“以①②③中的任意兩個為條件,推出第三個(結(jié)論)”的一個正確命題,并加以證明;
(2)“以①②③中的任意兩個為條件,推出笫三個(結(jié)論)”可以組成多少個正確的命題?(不必說明理由)

查看答案和解析>>

同步練習(xí)冊答案