一條東西走向的高速公路上有兩個加油站A、B,在A的北偏東45°方向還有一個加油站C,C到高速公路的最短距離是30千米,B、C間的距離是60千米,想要經(jīng)過C修一條筆直的公路與高速公路相交,使兩路交叉口P到B、C的距離相等,請求出交叉口P與加油站A的距離.(結果可保留根號)

解:分兩種情況:
(1)如圖1,在Rt△BDC中,∠B=30°,
在Rt△CDP中,∠CPD=60°,
DP==10千米,
在Rt△ADC中,AD=DC=30千米,
AP=AD+DP=(30+10)千米.

(2)如圖2,同(1)可求得DP=10千米,AD=30千米,
AP=AD-DP=(30-10)千米.
故交叉口P與加油站A的距離為(30±10)千米.
分析:P可能在線段AB上,也可能在AB的延長線上,因而應分兩種情況進行討論.
點評:解一般三角形,求三角形的邊或高的問題一般可以轉(zhuǎn)化為解直角三角形的問題,解決的方法就是作高線.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

如圖①是一張長方形餐桌,四周可坐6人,2張這樣的桌子按圖②方式拼接,四周可坐10人.現(xiàn)將若干張這樣的餐桌按圖③方式拼接起來:

(1)三張餐桌按題中的拼接方式,四周可坐______人;
(2)n張餐桌按上面的方式拼接,四周可坐______人(用含n的代數(shù)式表示).若用餐人數(shù)為26人,則這樣的餐桌需要______張.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知AB∥CD,AD、BC相交于點E,點F為EC上一點,且∠EAF=∠C,試猜想線段AF、FE和FB之間的數(shù)量關系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

(1)如圖,邊長為1的五個小正方形恰好如圖放在大正方形中,求大正方形的邊長.

(2)如圖,六個大小完全一樣的小正方形如圖放置在大正方形中,已知大正方形的邊長是10,求圖中x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

已知數(shù)學公式與3xnym同類項,則m=________,n=________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知關于x的一元二次方程x2+3x+1-m=0
(1)方程有兩個不相等的實數(shù)根,求m的取值范圍;
(2)設x1、x2為方程的兩個根,且m為最大的負整數(shù),求x1x2+x1+x2的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

“五一”期間某校組織七、八年級的同學到某景點郊游.該景點的門票全票票價為 l 5元/人,若為59-99人,可以八折購票,1 00人及以上則可六折購票,已知參加郊游的七年級同學少于50人,八年級同學多于50人而少于100人,若七、八年級分別購票,兩個年級共計應付門票費1575元;若合在一起購買折扣票,總計應付門票費1080元.
(1)參加郊游的七、八年級同學的總人數(shù)是否超過100人?
(2)參加郊游的七、八年級同學各為多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

如圖,一個扇形紙片OAB.OA=10cm,∠AOB=120°,小明將OA、OB合攏組成一個圓錐形漏斗(接縫忽略不計).則漏斗的底面圓的半徑為________cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

我國西部地區(qū)約占我國國土面積的數(shù)學公式,我國國土面積約960萬平方千米,若用科學記數(shù)法表示,則我國西部地區(qū)的面積為________平方千米.

查看答案和解析>>

同步練習冊答案